
LOGARITHMIC MEAN FOR SEVERAL ARGUMENTS

SEPPO MUSTONEN

Abstract. The logarithmic mean is generalized for n positive arguments
x1, . . . , xn by examining series expansions of typical mean numbers in case
n = 2. The generalized logarithmic mean defined as a series expansion can then
be presented also in closed form which proves to be the (n−1)th divided differ-
ence (multiplied by (n−1)!) of values f(u1), . . . , f(un) where f(ui) = eui = xi,
i = 1, . . . , n. Various properties of this generalization are studied and an effi-
cient recursive algorithm for computing it is presented.

1. Introduction

Some statisticians and mathematicians have proposed generalizations of the log-
arithmic mean for n arguments (n > 2), see E.L.Dodd [3] and A.O.Pittenger [11].

The generalization presented in this paper differs from the earlier suggestions
and has its origin in an unpublished manuscript of the author [6]. This manuscript
based on a research made in early 70’s is referred to in the paper of L.Törnqvist,
P.Vartia, Y.O.Vartia [13]. It essentially described a generalization in cases n = 3, 4
and provided a suggestion for a general form which will be derived in this paper.

The logarithmic mean L(x1, x2) for two arguments x1 > 0, x2 > 0 is defined by

(1) L(x1, x2) =
x1 − x2

log (x1/x2)
for x1 6= x2 and L(x1, x1) = x1.

Obviously Leo Törnqvist was the first to advance the ”log-mean” concept in his
fundamental research work related to price indexes [12]. Yrjö Vartia then imple-
mented the logarithmic mean in his log-change index numbers [14].

In [13] the log-change log(x2/x1) is suggested to be used instead of the common
relative change (x2−x1)/x1 as an indicator of relative change for several theoretical
and practical reasons. It is connected to the logarithmic mean simply by

(2) log (x2/x1) =
x1 − x2

L(x1, x2)
.

Among other things it will be shown that a corresponding formula is valid in the
generalized case.

2. Generalization

The starting point for the generalization is the observation that L(x1, x2) is found
to be related to the arithmetic mean A(x1, x2) = (x1 + x2)/2 and the geometric
mean G(x1, x2) =

√
x1x2 by using suitable series expansions for each of them.
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By denoting

x1 = exp u1, x2 = expu2

the following expansions based on

expu = 1 + u + u2/2! + u3/3! + . . .

are immediately obtained:

A(x1, x2) = 1 + (u1 + u2)/2 + (u2
1 + u2

2)/(2 · 2!) + (u3
1 + u3

2)/(2 · 3!) + . . . ,

G(x1, x2) =
√

eu1eu2 = exp [(u1 + u2)/2]

= 1 + (u1 + u2)/2 + (u1 + u2)2/(22 · 2!) + (u1 + u2)3/(23 · 3!) + . . .

= 1 + (u1 + u2)/2 + (u2
1 + 2u1u2 + u2

2)/(22 · 2!)

+ (u3
1 + 3u2

1u2 + 3u1u
2
2 + u3

2)/(23 · 3!) + . . . ,

L(x1, x2) = (eu1 − eu2)/(u1 − u2)

= 1 + (u1 + u2)/2 + (u2
1 + u1u2 + u2

2)/(3 · 2!)

+ (u3
1 + u2

1u2 + u1u
2
2 + u3

2)/(4 · 3!) + . . . .

The expansions are identical up to the first degree. In the term of degree m > 1
the essential factor is a symmetric homogeneous polynomial of the form

Bmum
1 + Bm−1u

m−1
1 u2 + Bm−2u

m−2
1 u2

2 + · · · + B0u
m
2

divided by the sum of its coefficients Bm,Bm−1, . . . ,B0. These coefficients charac-
terize each of the means completely.

In the arithmetic mean we have

B0 = B1 = 1 and B2 = · · · = Bm−1 = 0.

In the geometric mean they are binomial coefficients

Bi = C(m, i), i = 0, 1, . . . , m

and in the logarithmic mean all coefficients equal to 1:

Bi = 1, i = 0, 1, . . . , m.

The coefficients of the logarithmic mean arise from division (um+1
1 −um+1

2 )/(u1−u2)
which symmetrizes its structure. Also other means (like harmonic and moment
means) have similar expansions but their B coefficients are more complicated. The
logarithmic mean has the most balanced B structure.

On the basis of this fact it was natural to generalize L in such a way that it
keeps this simple structure. Thus the logarithmic mean for n observations

xi = exp ui, i = 1, 2, . . . , n

is defined by
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(3)

L(x1, x2, . . . , xn) = 1 + (u1 + u2 + · · · + un)/n

+
u2

1 + u1u2 + · · · + u1un + u2
2 + u2u3 + · · · + u2

n

C(n + 1, 2) · 2!
+ . . .

+
um

1 + um−1
1 u2 + · · · + um

n

C(n + m − 1, m) · m!
+ . . . .

In this series expansion the polynomial in the term of degree m has the form

P (n, m) =
∑

i1+i2+···+in=m
i1≥0,i2≥0,...,in≥0

ui1
1 ui2

2 . . . uin
n

and so the all B coefficients are equal to 1. They have divisors C(n + m − 1, m)
corresponding to the number of summands.

In my earlier study [6] I succeeded in transforming this expansion to a closed
form

(4) L(x1, x2, . . . , xn) = (n − 1)!
n∑

i=1

xi
n∏

j=1
j 6=i

log (xi/xj)

when all the x’s are mutually different positive numbers. In fact, I was then able
to prove (4) in cases n = 3, 4 and the general form was only a natural conjecture.
I lost my interest in further studies since the formula is numerically very unstable
for large n values. It is better to use the series expansion (3) in practice. However,
in theoretical considerations (4) is important.

3. Derivation of the formula (4)

Polynomials P (n, m) can be represented in a recursive form according to de-
creasing powers of the last u as

(5)

P (n, m) = um
n

+ um−1
n P (n − 1, 1)

+ um−2
n P (n − 1, 2)

. . .

+ u1
nP (n − 1, m − 1)

+ u0
nP (n − 1, m)

with side conditions P (n, 1) = u1 + u2 + · · · + un, P (1, m) = um
1 .

If all x’s (and therefore also u’s) are mutually different, it is fundamental to notice
that polynomials P (n, m) can be represented by another way by using expressions

(6) Q(n, m) =
n∑

i=1

um
i

Ui
, m = 0, 1, 2, . . .
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where

(7) Ui =
n∏

j=1
j 6=i

(ui − uj), i = 1, 2, . . . , n.

The following identities are valid and will be proved in the next chapter.

(8) Q(n, m) = 0 for m = 0, 1, 2, . . . , n − 2,

(9) Q(n, n − 1) = 1,

(10) Q(n, m) = P (n, m − n + 1) for m = n, n + 1, n + 2, . . . .

By means of these identities the formula (4) can be derived from the definition
(3) as follows:

L(x1, x2, . . . , xn) = 1 + P (n, 1)/n + P (n, 2)/[C(n + 1, 2) · 2!] + . . .

+ P (n, m)/[C(n + m − 1, m) · m!] + . . .

= 1 + (n − 1)!
∞∑

m=1

P (n, m)
(n + m − 1)!

= 1 + (n − 1)!
∞∑

m=1

Q(n, n + m − 1)
(n + m − 1)!

from (10)

= 1 + (n − 1)!
∞∑

k=n

Q(n, k)
k!

= (n − 1)!
∞∑

k=n−1

Q(n, k)
k!

from (9)

= (n − 1)!
∞∑

k=0

Q(n, k)
k!

from (8)

= (n − 1)!
∞∑

k=0

∑n
i=1 uk

i /Ui

k!
from (6)

= (n − 1)!
n∑

i=1

∑∞
k=0 uk

i /k!
Ui

= (n − 1)!
n∑

i=1

expui
n∏

j=1
j 6=i

(ui − uj)
from (7)

which is identical with (4) since ui = log xi, i = 1, 2, . . . , n.

4. Proof of identities (8), (9), (10)

It can be seen immediately that the identities are valid for n = 2. In this case

Q(2, k) = uk
1/(u1 − u2) + uk

2/(u2 − u1) = (uk
1 − uk

2)/(u1 − u2), k = 0, 1, 2, . . .

and thus

Q(2, 0) = 0, Q(2, 1) = 1 and Q(2, k) = P (2, k − 1) for k = 2, 3, . . . .
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The general proof is based on induction from n − 1 to n. Thus by assuming that
the identities are valid in case n − 1 it will be shown that they are valid in case n,
too.

By writing denominators um
i of (6) in the form (um

i −um
n )+um

n and by splitting
these terms and by dividing the first part by the last factor ui − un in divisor (7)
we get a recursion formula

(11)

Q(n, m) = um−1
n Q(n − 1, 0)

+ um−2
n Q(n − 1, 1)

. . .

+ u0
nQ(n − 1, m − 1) + um

n Q(n, 0), m = 1, 2, . . . .

Let us denote Q(n, 0) = f(u1, u2, . . . , un) and study the function f with the
inverse values of its arguments, i.e. the function f(1/u1, 1/u2, . . . , 1/un). Then
the expressions 1/ui − 1/uj can be written in the form (uj − ui)/(uiuj) and after
simplification we get

f(1/u1, 1/u2, . . . , 1/un) = (−1)nu1u2 . . . unQ(n, n − 2).

By applying the recursion formula (11) to the last factor and by observing that (8)
is valid in case n − 1, we see that only the last term in the recursion formula can
be different from 0 and hence

f(1/u1, 1/u2, . . . , 1/un) = (−1)nu1u2 . . . unun−2
n f(u1, u2, . . . , un).

Function f(u1, u2, . . . , un) is homogeneous and symmetric. If f were else than
identically zero, it leads to a contradiction since the right side of the last equation
could not be a symmetric function in cases n > 2. Thus Q(n, 0) = 0 for n = 2, 3, . . .
and (8) has been proved in case m = 0.

Then in (11) the last term can be omitted and we have

(12)

Q(n, m) = um−1
n Q(n − 1, 0)

+ um−2
n Q(n − 1, 1)

. . .

+ u0
nQ(n − 1, m − 1), m = 1, 2, . . . .

By the induction assumption this gives

Q(n, 1) = u0
nQ(n − 1, 0) = 0,

Q(n, 2) = u1
nQ(n − 1, 0) + u0

nQ(n − 1, 1) = 0,

. . .

Q(n, n − 2) = un−3
n Q(n − 1, 0) + · · · + u0

nQ(n − 1, n− 3) = 0

and so (8) has been proved also for m = 1, 2, . . . , n − 2.
In case m = n − 1 (12) gives

Q(n, n − 1) = u0
nQ(n − 1, n − 2) = 1

and (9) is valid.
In case m = n (12) gives

Q(n, n) = u1
nQ(n − 1, n − 2) + u0

nQ(n − 1, n− 1)

= un + (u1 + u2 + · · · + un−1) = u1 + u2 + · · · + un
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and (10) is valid when m = n and hence Q(n, n) = P (n, 1).
By these results the recursion formula (12) is reduced to the form

(13)

Q(n, m) = um−n+1
n

+ um−n
n Q(n − 1, n − 1)

. . .

+ u0
nQ(n − 1, m − 1), m = n, n + 1, . . . .

By using this formula and (10) for n − 1 we get

Q(n, n + 1) = u2
n + u1

nQ(n − 1, n − 1) + u0
nQ(n − 1, n)

= u2
n + unP (n − 1, 1) + P (n − 1, 2)

= P (n, 2) from (5)

which means that (10) is valid for m = n + 1 and Q(n, n + 1) = P (n, 2). Similarly,
when m > n we obtain by using (13) and (10) (the latter for n − 1)

Q(n, m) = um−n+1
n

+ um−n
n P (n − 1, 1)

+ um−n−1
n P (n − 1, 2)

. . .

+ u0
nP (n − 1, m − n + 1) = P (n, m − n + 1) from (5)

and this proves (10) in general.

5. Logarithmic mean and divided differences

Since I felt that identities (8) and (9) must be known in some other connections
and, in particular, the denominators (7) are present also in the Lagrange’s inter-
polation formula, I sent an inquiry about their origin to some of my colleagues in
Finland.

Jorma Merikoski (University of Tampere) remarked immediately that in fact
(8) and (9) are well-known identities when considering divided differences (in the
Lagrangian interpolation scheme) for powers uk, k = 0, 1, . . . , n − 2.

His note led me to find out that (4) is equal to the (only) (n−1)th order divided
difference of function values xi = expui, i = 1, 2, . . . , n, multiplied by (n− 1)! (See
e.g. C.E.Fröberg [4] p. 148).

For example, in case n = 3 the divided differences are

u f(u) 1st difference 2nd difference
u1 exp u1

exp u2 − exp u1
u2 − u1

u2 exp u2

expu3 − expu2

u3 − u2
− exp u2 − exp u1

u2 − u1
u3 − u2exp u3 − exp u2

u3 − u2
u3 exp u3
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and the second divided difference is equal to
L(expu1, expu2, exp u3)/2 =

exp u1

(u1 − u2)(u1 − u3)
+

expu2

(u2 − u1)(u2 − u3)
+

exp u3

(u3 − u1)(u3 − u2)
.

This means that L(x1, . . . , xn) can be computed recursively according to the
formula

(14) L(x1, . . . , xn) = (n − 1)
L(x2, . . . , xn) − L(x1, . . . , xn−1)

log (xn/x1)
for n = 2, 3, . . . .

Since, according to the classical mean value theorem the (n − 1)th divided differ-
ence d(u1, . . . , un) for function values f(u1), . . . , f(un) (for a function f which is
continuously differentiable n−1 times) can represented in the form (see Fröberg [4],
p. 148)

d(u1, . . . , un) =
f (n−1)(ξ)
(n − 1)!

where min (u1, . . . , un) < ξ < max (u1, . . . , un) we have now f(u) = expu with all
derivatives identically equal to f(u) and hence

L(x1, . . . , xn) = eξ.

Thus the logarithmic mean is directly related to a ’mean value’ also in the sense of
standard analysis for real functions.

6. Relative changes

By (14) the relative change log (xn/x1) can be written as

log (xn/x1) = (n − 1)
L(x2, . . . , xn) − L(x1, . . . , xn−1)

L(x1, . . . , xn)
.

Since trivially
xn

x1
=

x2

x1
· x3

x2
· . . . · xn

xn−1
,

we have ∑n−1
i=1 log (xi+1/xi)

n − 1
=

L(x2, . . . , xn) − L(x1, . . . , xn−1)
L(x1, . . . , xn)

,

i.e. the average of the log-changes in series of observations x1, x2, . . . , xn is equal
to a natural generalization of the right-hand side in (2).

7. Logarithmic mean for exponentially growing data

Let us consider the data set

x0, x0c, x0c
2, x0c

3, . . . , x0c
n−1.

In this case (4) can be written in the form

L(x1, . . . , xn) =
(n − 1)! x0

(log c)n−1

n∑

i=1

ci−1

n∏
j=1
j 6=i

(i − j)
.
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The divisors in the sum are of the form (−1)n−i(i− 1)!(n− i)! and then according
to the formula C(m, k) = m!/[k! ∗ (m − k)!] for binomial coefficients we have

L(x1, . . . , xn) =
(n − 1)! x0

(log c)n−1

n∑

i=1

(−1)n−iC(n − 1, i− 1)ci−1

(n − 1)!

=
(n − 1)! x0

(log c)n−1
× (c − 1)n−1

(n − 1)!
(from binomial formula)

= x0[(c − 1)/ log c]n−1

= x0L(c, 1)n−1.

Thus when the observations are growing by a constant factor c > 1, the logarithmic
mean grows by a constant factor L(c, 1). Apparently the same result is obtained
for 0 < c < 1, too.

In fact, a corresponding result is valid for the geometric mean since we get
immediately that

G(x1, x2, . . . , xn) = x0G(c, 1)n−1

where G(c, 1) =
√

c · 1. It shows certain similarity between the geometric and
logarithmic mean. However, when c 6= 1, it follows that limn→∞ L/G = ∞ since

(15) L(c, 1) > G(c, 1).

Inequality (15) for c > 1 can be proved simply by studying the behaviour of the
function f(x) = log x[L(x2, 1) − G(x2, 1)] = (x2 − 1)/2 − x log x for x > 1. Since

(16) L(ax, ay) = aL(x, y) and G(ax, ay) = aG(x, y) for a > 0,

it follows immediately that (15) is valid also for 0 < c < 1. Hence (15) has been
proved for all positive c 6= 1. Similarly the inequality L(x, y) > G(x, y) for x 6= y
is proved by using (15) and (16). Of course, other general proofs are available, see
e.g. B.C.Carlson [1].

8. Computational aspects

In principle, the generalized logarithmic mean can be computed quickly from the
closed form (4) but this fails numerically for n > 14 although double precision is
used. The reason for this unpleasant phenomen is the fact that (4) is a sum of ‘huge’
alternating terms and the number of significant digits are soon lost. Furthermore
(4) is not applicable at all when some x’s are equal. Also the recursive formula (14)
suffers for same reasons.

Hence the main method for computing logarithmic means in the statistical sys-
tem Survo (Mustonen [7], http://www.survo.fi) is based on the original definition
i.e. the series expansion (3). For this task I have created a new Survo program
module LOGMEAN.

When using the series expansion it is essential how the symmetric, homogeneous
polynomials P (m, n) are evaluated. It is done by using the recursive formula (5).
To speed up the recursion process the LOGMEAN module saves all computed P (n, m)
values in a table. Thus in each recursive step it is checked whether the current
P (n, m) has been already calculated. By this technique cases where n is less than
10000 are calculated very rapidly but on current PC’s also cases where n is much
higher can be handled.
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For example, for a data set 1, 2, 3, . . . , n (n = 200000) LOGMEAN gives

Ln = 73578.65538616560 (logarithmic mean)
Gn = 73578.47151997556 (geometric mean)

and after doing the same when the last observation 200000 is omitted we get for
n = 200000

Ln − Ln−1 = 0.36788036154758 Ln/n = 0.36789327693083
Gn − Gn−1 = 0.36788036060170 Gn/n = 0.36789235759988

On the basis of these calculations it is obvious that

lim
n→∞

(Ln − Ln−1) = lim
n→∞

(Gn − Gn−1) = 1/e = 0.367879 . . .

and also
lim

n→∞
(Ln/n) = lim

n→∞
(Gn/n) = 1/e.

For the geometric mean these results can be proved by Stirling’s formula. The same
is not yet proved for the logarithmic mean.

9. Concluding remarks

The generalization presented in this paper comes close to that of Pittenger [11] in
certain aspects. However, already numerical examples with n = 3 show that it these
generalizations are not the same. Also in principle Pittenger’s approach is different
since he starts from the inverse of L(x1, x2) and by following Carlson [1] writes this
inverse as a certain definite integral which is then extended into multivariable form
and finally represented as a closed expression.

It is obvious that the generalized logarithmic mean as defined in this paper
satisfies inequalities

(17) G(x1, . . . , xn) ≤ L(x1, . . . , xn) ≤ A(x1, . . . , xn)

but it has not been proved for n > 2. By comparing series expansions of the form
(3) it may be possible to show even a stronger result that the inequalities are valid
term by term, i.e.

(18)
(u1 + · · · + un)m

nm
≤ P (n, m)

C(n + m − 1, m)
≤ um

1 + · · · + um
n

n

for ui ≥ 0, i = 1, 2, . . . , n. Then (17) is also valid when any of the u’s is < 0, i.e. any
of the x’s ∈ (0, 1), since for any of these means, say M , we have M(ax1, . . . , axn) =
aM(x1, . . . , xn) for all a > 0.

The LOGMEAN program includes options for checking the validity of (17) and (18).
In rather extensive numerical tests no violation against these conjectures have been
found.

10. Appendix 1: Proof of (18) in case n = 2 (26 December 2002)

When n = 2 it is sufficient to study the case u1 = u, u2 = 1 and assume that
u > 1. Then (18) can be written as

(19)
(u + 1)m

2m
≤

um+1 − 1
(m + 1)(u − 1)

≤
um + 1

2
The second part of this double inequality is equivalent to

2(um+1 − 1) ≤ (m + 1)(u − 1)(um + 1)
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or

(20) f(u) = (m − 1)um+1 − (m + 1)um + (m + 1)u − (m − 1) ≥ 0.

By studying the first and second derivatives of f(u) it can be easily seen that (20)
holds.

The first part of the double inequality is equivalent to

(m + 1)(u − 1)(u + 1)m ≤ 2m(um+1 − 1)

or

(21) g(u) = 2m(um+1 − 1) − (m + 1)(u − 1)(u + 1)m ≥ 0.

It can be shown by induction that the kth derivative of g(u) is

g(k)(u) =
(m + 1)!

(m − k + 1)!
[2mum−k+1 − k(u + 1)m−k+1 − (m − k + 1)(u − 1)(u + 1)m−k]

for k ≤ m + 1 and g(k)(u) = 0 for k > m + 1. Especially when u = 1 we have

g(k)(1) =
(m + 1)!

(m − k + 1)!
2m−k+1(2k−1 − k), k ≤ m + 1.

Thus g(u) and all its derivatives are non-negative for u = 1 and from the Taylor
expansion of g(u) we can deduce that (21) holds for all m.

11. Appendix 2: Proof of the first part of (18) (10 June 2003)
by Jorma Merikoski

Let u1, ..., un ≥ 0. Their m′th ”symmetric mean” (see e.g. Mitrinović [5], p. 95)
is defined by

sm(u1, ..., un) = C(n, m)−1
∑

1≤i1<...<im≤n

ui1 ...uim .

Allowing also equal ik’s, we meet the ”generalized m′th symmetric mean” (see
e.g. [5], p. 105, note that C(n + m − 1, m) = C(n + m − 1, n− 1)), defined by

hm(u1, ..., un) = C(n + m − 1, m)−1
∑

i1+...+in=m

u1
i1 ...un

in (i1, ..., in ≥ 0),

which appears in the middle of (18). (Here we define 00 = 1. In fact, the functions
sm and hm should not be called means, since they are not homogeneus and all
their values are not between miniui and maxiui. Neither should hm be called a
generalization of sm, since sm is not obtained from hm as a special case. The
functions s

1/m
m and h

1/m
m are actual means.)

Fix u1, ..., un. Neuman ( [8], Corollary 3.2) proved that

k ≤ m ⇒ h
1/k
k ≤ h1/m

m .(22)

Putting k = 1 proves the first part of (18). The second part remains open.
DeTemple and Robertson [2] gave an elementary proof of (22) for n = 2, but

Neuman’s proof for general n is not elementary, applying B-splines. The problem,
whether the first part of (18) has an elementary proof, and the stronger problem,
whether (22) has such a proof, remain also open.
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12. Appendix 3: Alternative derivations of (4). Proofs of (17)
(7 October 2003) by Jorma Merikoski

I noted only recently that alternative derivations of (4) and proofs of (17) appear
in the literature.

Neuman [9] defined (as a special case of [9], Eq. (2.3))

L(x1, ..., xn) =
∫

En−1

(
exp

n∑

i=1

vi log xi

)
dv,(23)

where v1 + ... + vn = 1,

En−1 = {(v1, ..., vn−1) | v1, ..., vn−1 ≥ 0, v1 + ... + vn−1 ≤ 1},

and dv = dv1...dvn−1. He ([9], Theorem 1 and the last formula) proved (17) and
reduced (23) into (4).

Pečarić and Šimić [10] tied Neuman’s approach to a wider context. They studied
extensively various logarithmic and other means. As a special case ([10], Remark
5.4), they obtained (4).

Xiao and Zhang (unaware of [9]) defined

L(x1, ..., xn) =
(n − 1)!

V (log x1, ..., log xn)

n∑

i=1

(−1)n+ixiVi(log x1, ..., log xn),(24)

where V denotes the Vandermonde determinant and Vi is obtained from it by
omitting the last row and i’th column. Actually (24) equals (4). Also they proved
(17).

The current version of this paper can be downloaded from
http://www.survo.fi/papers/logmean.pdf

13. Appendix 4: An update (17 November 2005) by Jorma Merikoski

Motivated by this paper, I [J. Ineq. Pure Appl. Math. 5 (2004), Article 65] sur-
veyed and further developed its results. Neuman [SIAM J. Math. Anal. 19 (1988),
736-750] proved the second part of (18).

References

[1] B.C.Carlson, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615–618.
[2] D.W.DeTemple and J.M.Robertson, On generalized symmetric means of two variables, Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 236–238.
[3] E.L.Dodd, Some generalizations of the logarithmic mean and of similar means of two variates

which become indeterminate when the two variates are equal, Ann. Math. Stat., 12 (1941),
422–428.
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