
Seppo Mustonen
seppo.mustonen@survo.fi

The fundamental concept of Survo is
the editorial approach, which surpassed
the menu-based interface of SURVO 76
in 1979, and still establishes the heart of
the current SURVO MM. In this ap-
proach, all functions of the system are
controlled by a specific text editor that
distributes the tasks between numerous
independent program modules. Thus
SURVO MM is not a single huge pro-
gram but a large family of small pro-
gram modules.

The Survo editor is the center of
all the activities, and the system, as a
whole, is a general environment for vari-
ous tasks related not only to statistical
analysis and computing. In fact, func-
tions of Survo have been extended to
many areas that support statistical re-
search and teaching of statistics.

Essentially, using Survo is like work-
ing with a combined word processor and
spreadsheet program with enhanced ca-
pabilities in various directions. Thus in
Survo, one can maintain the whole sta-
tistical research process so that each step
of that process is automatically docu-
mented. For these purposes, Survo in-
cludes functions for data input and
screening, general data management,
statistical graphics and analysis, matrix
computations, making reports in print-
able form, desktop publishing etc.

Survo also includes a powerful macro
language for making expert applications
by combining automatically and condi-
tionally ready-made functions of the sys-
tem. The same technique can be used for
creating teaching programs on any top-
ic, for example, statistical methods.

SURVO CROSSINGS

Survo is an interactive computing environment for processing text

and numerical data. Its current version SURVO MM works in

Windows, but it has emerged during a 40-year-old history that

includes, for example, the statistical programming language SURVO

66, and SURVO 76, one of the first interactive statistical packages.

These various generations of the Survo system have played an

essential part in the tradition of statistical computing in Finland.

Survo puzzles

Since the editorial approach of Survo
provides plenty of means for the user to
express ideas and to organize computa-
tional experiments in a personal way, it
gives scope for imagination and inven-
tiveness.

Survo (cross sum) puzzles provide an
example of these features since without
the experience offered by working with
Survo, I would have hardly come across
the idea of such a number game.

In a Survo puzzle the task is to fill an
m . n table by integers 1,2,...,mn, so that
each of these numbers appears only once,
and their row and column sums are equal
to integers given on the bottom and the

Heron

The user can type text, formulas,
commands, etc. in the edit field.
In this example, a typical com-
putation scheme is presented for
computing the area of a triangle.
The essential ingredients are
given as formulas naturally within
the text commenting the task.
When Area= on the line 9 is
activated, Survo identifies and
evaluates the pertinent formulas
and immediately writes the result
(84) in its place.

In the second part, a family of curves is plotted by activating a GPLOT command on the
line 14. Now various specifications and comments are given freely around the command for
adjusting the details. The graph itself appears in a separate window located, in this case, up-
on the main window.

Even this small example indicates one major difference between Survo and typical math-
ematical software (like Mathematica or Matlab). In Survo, the steps of computing can be pre-
sented as free format descriptions and no strict order is required. This form of literal or self-
documenting programming has already been introduced in Survo in the late seventies.

All the work in Survo is controlled from an edit field having
often thousands of lines and hundreds of columns. A part
of it is always visible in the main window.

right side of the table. Often some of the
integers are given readily in the table in
order to guarantee uniqueness of the so-
lution and/or for making the task easier.

Survo puzzles have been eagerly stud-
ied and solved among the active Survo
users and their friends beginning from
the spring of 2006. In harder cases, vari-
ous computational features of the Survo
system have been helpful. Some people
have found Survo puzzles more interest-
ing and more challenging than the popu-
lar Sudoku or Kakuro puzzles.

Although it is fairly easy to make algo-
rithms for solving any Survo puzzle sys-
tematically, in many cases heuristic treat-
ment of the problem at hand may lead to
a more elegant solution. It is obvious that

�0 CSCnews

www.survo.fi/english
www.survo.fi/english
www.survo.fi/english
www.survo.fi/english
www.survo.fi/puzzles
www.survo.fi/presentation/history.html
Kimmo_usr
Sticky Note
This PDF is an extract from theCSCnews, Volume 19, Number 1, 2007, pp. 30-32.http://www.csc.fi/english/csc/publications/cscnews/back_issues/pdf-files01-07/1-07

Music, statistics and data processing

Survo has an outstandingly long history, since the first Survo was in
use already in the 1960s. The father of Survo, professor emeritus
Seppo Mustonen from the University of Helsinki, Dept. of Mathe-
matics and Statistics, remembers the first moments of Survo well:

“It was a hot summer day in 1962. Martti Tienari and I were
then working in the Electronics Department of the Finnish Cable
Company (predecessor of the current Nokia) and now attending the
second IFIP Conference in Munich. We had an idea of a general pro-
gramming language for processing of statistical data and presented
it to Professor Olli Lokki. After a short discussion he readily sup-
ported our idea. Because I was for responsible of making statistical
software in our company, it was my task to launch the project.”

Automatic data processing had started at the Finnish universities
at the beginning of the 60s; the University of Helsinki had received
its first computer, ESKO, in 1960, and by the middle of the decade,
the universities were using the IBM 1620, IBM 1130, and Elliott 803
machines. The first version SURVO 66 was created for Elliott 803 by
a work group led by Seppo Mustonen who actually was responsi-
ble for the basic solution and most of the program code. After a year
or two Mustonen became professor of Statistics at the University of
Helsinki and Tienari became Professor of Computer Science in the
same university.

About working with different kinds of computers, Mustonen says,
“the first computers in the sixties were exciting. It was inspirational
to work hands-on with the computers.” A little later the universities
got their data processing centers, and everything had to go through
these: “You sent in a pack of punched cards, and a day or two later
got the results of your job.” This was not a satisfying way of working,
“I was getting a little desperate, but perked up in 1975, when our
department bought a Wang 2200 minicomputer.”

The first interactive version SURVO 76 was developed by Mus-
tonen for this minicomputer. “When demonstrating it, some special-
ists came to claim that I was merely playing with a computer, inter-
activity will never be needed in statistical computing and data pro-
cessing! Of course, I didn’t agree, and told them that, on the con-
trary, now is the right time to learn the rules how to communicate
with a computer. At the beginning, working with SURVO 76 was like
a conversation, the program posed questions and the user gave an-
swers. One of the leading principles was that the program remem-
bered earlier answers and offered them as defaults for the next time.
However, the new idea of the editorial approach superseded this
conversational working mode since I felt immediately that it was still
more interactive and efficient way to get along with the computer.

“Surprisingly, the idea arose in connection with a musical applica-
tion. I wanted to develop a program that would accurately and eas-
ily transcribe my son Olli’s hand-written violin compositions into a
printable form on the Wang minicomputer that was equipped with
a drum plotter,” Mustonen reminisces, “As a minor part of this task I
also had to program a new editor and only after this experiment I re-
alized that the same editor can be extended to computational and
statistical applications.”

Mustonen says that you can find a flash demo of the idea of the
editorial approach at http://www.survo.fi/flash/e_idea.html.

Mustonen has a soft spot for music, and music gave him his in-
spiration for the editor in Survo. Says Mustonen, “You never know,
a priori, what interesting things can emerge, when alien life forms
meet.”

Unconventional combinations, like music and statistics, can be
fruitful, and Mustonen tries to encourage statisticians to fan out into
other sciences as well.

Leena Jukka

 6 30

 8 28

 3 30

27 16 10 25

A simple example

Solution step by step

 6 30

 8 1 28

 9 3 30

27 16 10 25

12 6 2 10 30

 8 1 5 4 28

 7 9 3 11 30

27 16 10 25

 6 30

 8 28

 3 30

27 16 10 25

12 6 30

 8 1 28

 7 9 3 30

27 16 10 25

12 6 30

 8 1 28

 7 9 3 11 30

27 16 10 25

12 6 2 10 30

 8 1 28

 7 9 3 11 30

27 16 10 25

there are no simple general rules for solv-
ing these puzzles manually as in Sudoku,
for example. Of course, various computa-
tional tools, like routines for finding re-
stricted partitions of integers (for exam-
ple, the COMB program in Survo) are
helpful in more demanding problems.

Many people seem to tackle Survo
puzzles by a mixture of rational reason-
ing and guesswork. It is usually a much
more demanding task to solve these puz-
zles, so that besides reaching the solution,
one has also proved that there are no oth-
er solutions.

Basic information and guided solu-
tions may be found in my expository
paper

www.survo.fi/papers/puzzles.pdf and
general information in

www.survo.fi/puzzles.
The open Survo puzzles (where only

the row and column sums are given) call
for special attention. They are like statis-
tical tables of frequencies with given mar-
ginal frequencies but all cell frequencies
missing. In general, the marginal distri-
butions have very little to say about the
joint distribution of two statistical vari-
ables.

The marginals practically never de-
fine cell frequencies uniquely. Sur-
prisingly, in open Survo puzzles for any
dimensions m,n there are plenty of cas-
es where we have a unique solution for
the “cell frequencies”. This is due to the
very strict condition that the cells have
to be occupied by numbers 1,2,...,mn in
some order.

However, open Survo puzzles with
a unique solution comprise a minori-
ty among all tables with valid margin-
al sums. When the dimensions m and
n grow, the number S(m,n) of essential-
ly different and uniquely solvable Survo
puzzles seem to grow steadily but the pro-
portion of them seem to decrease (to zero
as a limit, I presume).

It is known, for example, that
S(2,2)=1, S(3,3)=38, and, S(4,4)=5327,
but already computation of S(5,5) may
be a very hard task.

The table has to be filled by integers
from 1 to 12 so that each of these
numbers appears only once and their
row and column sums are equal to
integers given on the bottom and the
right side of the table.

 CSCnews �1

www.survo.fi/flash/e_idea.html
www.survo.fi/papers/puzzles.pdf
www.survo.fi/puzzles

For those who have not time and pa-
tience to solve Survo Puzzles, quick
games, for example, as a Java applet
are available in
http://www.survo.fi/java/quick5x5.
html.

As quick games, Survo Puzzles give
challenges of another kind and are ex-
cellent practice for logical reasoning,
mental arithmetics, and even for rec-
ognition of musical intervals

11

14

20

7 17 21

30

 9 41

13 49

9 13 26 31 41

24

29

38

45

11 28 42 55

Juha HaatajaImprints

Moving programs
Write Portable Code—An Intro-
duction to Developing Software
for Multiple Platforms (Brian
Hook; No Starch Press, 2005)

Brian Hook’s guide to writing port-
able code motivates developers to
cross-platform development, and
answers many basic questions
about code portability. Why not try to make
code portable from the beginning? And what should you first
do when you need to make a legacy code portable?

So, why write portable code? First of all, you reach a larger market,
and avoid locking to a single platform. Also, portable code tends to be
more robust, because sloppy assumptions and lazy coding habits tend to
reveal themselves.

Moving a program from one platform to another may be a daunting
task. Also, platforms themselves evolve. This forces programmers to port
their codes even within a single platform. But if you want to remain com-
petitive, you need to use new possibilities such as 64-bit processors.

As Hook discusses in the book, it is a surprise that there are almost no
books on portable coding, even though cross-platform development is
increasingly common. Software is ported from Linux to Windows, from
Windows to Mac OS X, and from desktop systems to pda-type devices,
or from desktops to supercomputers.

Hook’s book is an excellent introductory review of the subject, al-
though on most topics it covers just the basics. On the other hand, the
subject by itself is demanding both in theory and practice, so the reader
should know the practice of software development on the intermediate
or advanced level.

The book consists of 18 short chapters, and focuses on cross-platform
C/C++ development. There are extensive examples of portability issues
with C and C++. In addition, scripting languages like Javascript and Py-
thon are discussed.

How do you edit your source code on multiple platforms? What about
source control systems or portable build systems? It is a bit surprising to
see how many different topics affect code portability.

Many aspects of hardware may limit portability, such as byte ordering,
address space, and floating point arithmetic. Many compilers have “fea-
tures” that may pose problems in porting codes.

Writing portable user interfaces poses challenges by itself. Should one
use ready-made portable libraries, or code everything from scratch? Also,
data portability, file management, and scalable algorithms pose challenges
for the programmer.

Hook’s approach to porting code is practical. He describes many case
examples and concrete tools.

The practicality has a drawback, though. Within a few years many of
the examples may not be relevant any more. However, the book is highly
useful for a few years from now on.

The writer has personal knowledge about cross-platform development,
and also shares his expertise with the readers. The practical advice, clear
writing, and a good selection of essential topics make this book a treasure
for anyone interested in software development.

Degree of difficulty = 45

Three Survo puzzles
for the reader

Degree of difficulty = 275

Degree of difficulty = 950

�� CSCnews

www.survo.fi/java/quick5x5.html

