
B I T 8 (1968), 69--85

A STATISTICAL PROGRAMMING LANGUAGE

SURVO 66

T. ALANKO, S. MUSTONEN, M. TIENARI

Abstract .

SURVO 66 is a statistical job description system. The data processing require-
ments of a statistical research plan are expressed in the SURVO 66 language.
A compiler for the Elliott 803 and 503 computers has been constructed to translate
the SURVO iru~truetions to a form suitable for machine execution. The system
generalizes the concept of the customary integrated statistical program library.
It has been proved to extend considerably the range of elementary statistical jobs
which can be processed economically by an electronic digital computer.

Introduct ion .

The authors have co-operated since 1960 in programming statistical
applications for electronic digital computers. We have worked through
the usual stages of system development in this application field. We
defined standard statistical programs for different methods requiring
extensive computation: correlation, regression, factor analysis and other
multivariate methods. We soon noticed the value of a common data
standard for different programs, because many statistical problems re-
quired the application of different methods, often in an unpredictable
sequence. I t is, of course, of great practical importance to be able to
keypunch the data material just once although it is subsequently used
in different statistica] analysis programs. In the same way the inter-
mediate results e.g. correlation matrices should be in a form conforming
to the input requirements of the analysis programs. We also found it
practical to compute different elementary statistical results e.g. means,
variances and cross tabulations, of the data keypunched mainly for the
subsequent heavy computer analysis. In this way we came to an inte-
grated statistical program library for our computer, an Elliott 803B
with 8192 words of 39 bit core memory. Similar integrated libraries,
statistical program packages, have been reported for many computers
e.g. IBM 7090 [1], [2] and IBM 1401 [4].

In the course of the extensive statistical computing service which has
been maintained using the integrated statistical program library, we have
been observing the behaviour of the scientists using computer services

BIT 8 - - 5

70 T. ALA:NKO, S. MUSTONE:N, M, TIE)~'ARI

for their statistical research. The working habits of these scientists were
changing. They dared to collect much more extensive data material, more
attributes and more items than earlier. During the time of manual
statistical computations the statisticians were close to the data. A deci-
sion to perform some statistical analysis came after careful reasoning.
Now, the scientist--once he has decided to make use of the computer - -
is usually more careless. He often experiments with different analysis
methods, sometimes even without any clear a priori hypothesis. The
scientist is also of ten unable to look carefully at his data. The computer
service must therefore provide for him thorough quality control, cross
tabulation and plotting of the data. In manual computation one uses
every conceivable trick and short-cut to avoid extensive straightforward
computations. A computer user is tempted to exactly the opposite: a
straightforward standard computation is no problem, whereas any fresh,
simple idea might lead to slow and costly special programming or to
manual computing. I t is now wise to guide statistical work in such a
way tha t one can make use of the standard statistical programs.

The observations presented above lead us to aim for radically more
flexible statistical programs. There exist, however, some factors which
limit the possibilities of an integrated chain of statistical standard pro-
grams. Added flexibility usually means added complexity of use; we
would hope tha t the scientist need not be a computer specialist to be
able to define in computer language his processing requirements. Many
problems are left to the user of any integrated statistical program library
with flexible processing facilities. The user is expected to furnish para-
meters for the programs in the statistical package. He must consider
and fit together the different data structures used in the package, and
required in his research. I t is very difficult to provide adequate mne-
monic labelling of different variables and results. A statistical package
is usually unable to perform any parallel processing: each program handles
the data completely before it is able to deliver control to t.he next pro-
gram.

In the end, we felt. tha t the only way to achieve drastically more
flexibility in the statistical research process was to create a statistical
language, wlfieh would be comprehensible to any scientist familiar with
usual statistical methods. A specific design goal of the system SURVO
66 was to obviate any methods consulting staff between the scientist and
the computer.

The process of implementing our ideas proceeded through several
stages. In 1964, the first system design named SUI~VO 64 was elaborated.
I t was subsequently implemented in a reduced form which we called

A S T A T I S T I C A L PROGRAMI%IING L A N G U A G E SUI%VO 66 71

simply a generalized cross-tabulating system. The following stage was
a plan called SURVO 65, which we could not agree to be worth the cost
of implementing. Finally, a new design SURVO 66 emerged and was
implemented. The system was released in December 1967 for computing
service. The handbook of this general statistical data analysis system is
published in Finnish [3]. The system is now in use at several university
computer centers in Finland.

Basic principles of the hnguage SURVO 66.

SUI%VO 66 is a programming system tailored to the data processing
requirements of elementary statistics. The data exposed to an analysis
must conform to a special data standard. We presume that, the data con-
sists of numbers arranged in a data matrix. A row of the matrix, data
vector, represents the data from an object under observation: a person,
a unit of sample, a product item, a single experiment. The attributes of
the objects are variables: numbers characterizing the object, test scores,
replies to questions, measurements. 5lost statistical data materials can
be organized according to this standard. To this end, any qualitative
information must be coded in a numerical form; missing observations of
attributes are coded as out-of-range numbers. If no symbolic names
have been given to the variables, the system calls them X 1 , X 2 , X 3 , . . . ,
XM.

The tasks which a SURVO program is able to do are:

1. Quality control of the data (range of variables, interrelationships of
variables),

2. transforming the data,
3. estimation of basic statistical parameters: means, medians, standard

deviations, fractfles, correlations,
4. frequencies and cross tabulations,
5. performing tests of significance: t-test, z2-test,
6. simple statistical analysis: analysis of variance, regression analysis.

A task can be carried out selectively: the operations are applied only
to the data vectors conforming to a predetermined condition. This
feature allows, in effect, even handling of overlapping groups of data
and comparing different data groups in a single computer run. All the
objects referred to: variables, tables, correlation matrices, classification
scales, classes, conditions etc., can be given alphanumeric names. This is
in order to make the SURVO program easier to read. This practice also
enables the SURVO system to label the result quantities in an easily
comprehensible way.

72 T. ALANKO, S. MUSTONEN, M. TIENARI

For the sake of efficiency the SUI~VO 66 system applies a sort of
parallel processing. The data material is usually too extensive to be
stored in the fast random access memory. I t must be held on an external
data medium: magnetic tape, punched cards or paper tape. For any
standard packaged computation of elementary statistics it is sufficient
to have the data available one vector at a time. The cost of inpu~ makes
many small statistical computations uneconomical, if they must be
processed by independent programs. Therefore in the SURVO 66 system
the data is exposed to several parallel statistical operations within one
data input cycle.

As an introductory example we give a program which computes the
means of 20 variables from 100 observations. The description of this job
in SURVO language is simply:

M@20 N@100
MEAN®X1-X20
END~

The SUR~VO program is punched on paper tape and the data on paper
tape or punched cards.

The run of a SURVO program can be divided into three stages:
T1 : translation of SUI~VO program, T2 : input of the data under control
of the translated program, T3: final computations on cumulated tables
and output of results. During T1 the SURVO system program reads,
checks and stores the program. Storage space is allocated and sum loca-
tions are cleared. The second stage, T2, consists of reading the data.
The dimensions of the data matrix are read first, as wet1 as a set of
parameters describing the details of data format. While the data matrix
is being read, just one obsex~-ation vector is in the fast memory at the
same time. The whole SUI~VO program is obeyed for each observation
vector. Each SUI~VO instruction collects the information it needs from
the current observation vector. For instance, the instruction C01~REL
collects a frequency count and sums, sums of squares and products of
the variables referred to in the CORBEL instruction. When all observa-
tion vectors have been read and treated in T2, the SU~VO program is
obeyed once more. At this stage the computer goes over the cumulated
tables for the last time to get the final results and the output is generated.

In a sense the SUI~VO instructions have a dual interpretation. In
stage T2 they lead to different internal function than in stage T3. From
the point of view of the statistician, however, the instructions have a
single meaning: give the defined results on the basis of the observation

matrix.

A STATISTICAL PROGRANL~IING LANGUAGE SURVO 66 73

Programming in SURVO 66.

A SUI~VO program consists of the name of the program and of a
sequence of instructions written in the SURVO 66 language. The name
of the program is used in the output phase to label each page of results.
The instructions are of the form

{operator} @ {list of parameters}.

The delimiter symbol @ is used simply to terminate the operator identi-
fier. The operator tells what should be done, and is expressed by a
mnemonic operation code, e.g. MEAN, CORE.EL, END. The list of para-
meters has different requirements for different instructions. I t estab-
lishes the necessary references which are needed in order to obey the
instruction.

The instructions of a SURVO program are obeyed in the same order
in which they are writ ten in the program. The last instruction of any
SURVO program is El~q)®. Distinct instructions are to a large degree
independent of each other. However, the SURVO objects (variables,
tables, conditions), which are used in an instruction, must be defined in
an earlier instruction.

The identifiers used in the list of parameters consist of letters, digits
and special symbols (the six symbols ,~ : - () ? exepted). They are ter-
minated by the characters "space" or "line feed". The lengtb of an
identifier is unlimited; the system, however, considers only the first six
characters. The program constants conform to usual programming lan-
guage conventions.

A variable in the SURVO language may have several names. Each
input variable is automatically associated with a standard name Xi,
where i is the order number of the variable in the data vector. In order
to get mnemonic programs and results it is customary to rename the
variables using CALL-instructions. E.g. the instruction

CALL~ X3 W E I G H T
X7 L E N G T H

renames X3 and X7 as W E I G H T and L E N G T H respectively. New vari-
ables and other SURVO objects are named in the same instruction where
they are defined.

There exist means in the SURVO language to shorten long lists of
names. The list X1 ,X2 X20 can also be referred to by X1-X20.
Other group references can be defined using the NAME-instruction. For
instance the instruction

7 4 T. ALANKO, S. :~IUSTONEN, M. T I E N A R I

NAME® PART1 X1 X2 X5 X6 X9
@ PART2 X2 X4 X7 X8 X10
@ ALL PART1 PAI~T2

gives an easier means of reference: PART1 for variables X1, X2, X5, X6,
X9, PART2 for variables X3, X4, X7, X8, X10 and an alternative refer-
ence ALL for X1-X10.

The variables and constants in SURVO 66 language are integers or
fractions which are internally represented as integers scaled with a
power of ten. There may also appear Boolean variables. No floating point
variables are used, although the system makes use internally of floating
point computing. The system is easiest to apply when all the data con-
sists of integers: sealing requires some consideration by the programmer.

The parameter list of a SUI~VO instruction gives the SURVO objects
to be operated upon. I t also contains speciality parameters to specify
the operation in more detail. The speciality parameters are expressed in
the format

(speciality identifier} : (parameter identifier}.

In the following table we define the different speciMity identifiers. They
cannot all be used in connection with every SURVO instruction.

speciality parameter consequence
identifier function identifier of omission

N give a name to a new permissible a nameless
SURVO object to be identifier SURVO-object
defined in the instruc-
tion

S give tile scaling of a
new SURVO-variable

L

U

I F

define the lower bound
for a variable
define the upper bound
for a variable
define the selective
condition which deter-
mines whether the in-
struction should be o-
beyed or omitted for
the current data vector

integer depends on the in-
constant struction, usuMly

omitted scaling
constant no lower bound

constant no upper bound

Boolean the instruction is
variable obeyed for every

data vector

A STATISTICAL PROGRAMhfING LANGUAGE SURVO 66 75

speciality parameter consequence
identifier function identifier of omission

M miscellaneous normal method suggest the use of a
method which is better

suited than the stan-
dard method
refer to the variable to
be cross-tabulated in
TABLE -instruction
refer to the variable to
be used as a weight in
MEAN, STDDEV and
CORREL instructions

T variable the frequencies
only are tabulated

W variable no weighting
applied

The instructions of SURVO 66 language can be grouped into control
instructions, transformation instructions, classification and tabulating in-
structions, Boolean instructions and analysis instructions. We give here
a tabular presentation of the main features of different instructions.
The reader is referred to [3] for more detail.

Control instructions.

END@
WAIT@ IF: (condition)

STOP@ IF: <condition)

M@m

N@n

SPACES~k

COMMENT@ (comment string>

NAME@ <identifier> <list of variables>

CALL@ ul <identifier l}

u r <identifier r)

terminate the program list
suspend program operation if the
condition is satisfied
transfer to the next data vector
if the condition is satisfied
give the length of the data vector
(=m) . This is usually the first
instruction of any SURVO pro-
g r a m .

give the number of data vectors
(=n) . This instruction may be
omitted.
set the width of the result print-
out to k characters.
the program can be made more
readable b y using comments
give a name to a group of vari-
ables.
give the variables u 1 , u r
n e w n a m e s

76 T. ALANKO, S. M U S T O N E N , M. T I E N A R I

D E F @ ~ 1 , U 2 , " " ' ~ U r

L : < lower b o u n d >

U : (u p p e r b o u n d >

S : <scale>

t h e v a r i a b l e s u l , u s , . . . , u r a r e de -

f i n e d a s h a v i n g t h e propelCdes

d e f i n e d b y t h e s p e c i a l i t y p a r a -

m e t e r s . T h e v a r i a b l e s wi l l b e

c h e c k e d fo r t h e s e p r o p e r t i e s d u r -

i n g p h a s e T2 of t h e S U I ~ V O

s y s t e m .

T r a n s f o r m a t i o n i n s t r u c t i o n s .

T h e t r a n s f o r m a t i o n s c a n b e p e r f o r m e d s e l e c t i v e l y u s i n g I F - c o n d i t i o n s .

SET@ u u~

A D D ® u u l . . . u~

SUB@ u u~ u s
MULT@ u u 1 . . . u ~

D I V e u u~ u s

MOD@ u u I

8QRT@ u u 1

LOG@ u u l

E X P @ u u~

MAX@ u u ~ . . . u~

MIN@ u u l . • • u ~

O R D E R @ u

LAG@ u u 1 k

P R I N T @ u 1 . . . u r

M : (n u m b e r of o u t p u t d e v i c e)

I F : < c o n d i t i o n)

U : ~ U 1

:---- U l q - . . . -{-U r

U : ---- U I - - U 2

q~:----- U l X ~ 2 X . . . U r

: ---~ U l / ~ . 2

U : = [Ul]

U : = ~/~11

Y~ : __-- l n ~ t 1

u : ---- e x p u 1

U : = 1 T l a X (g l , . . • , U r)

u : = r a in (u l , . • . , %)

u : = t h e s e q u e n c e n u m b e r of t h e d a t a

v e c t o r

u : = t h e v a l u e of t h e v a r i a b l e u l in t h e

d a t a v e c t o r w h i c h l ies in t h e d a t a

m a t r i x k r o w s e a r l i e r t h ~ n t h e cu r -

r e n t v e c t o r .

A ~ r a n s f o r m e d d a t a m a t r i x i s p r i n t e d

u s i n g t h e s p e c i f i e d o u t p u t dev ice . T h e

v e c t o r s t o b e i n c l u d e d in t h e t r a n s -

f o r m e d n e w m a t r i x ca, n b e s e l e c t e d

t h r o u g h t h e I F - c o n d i t i o n .

B o o l e a n i n s t r u c t i o n s .

E Q U A L @ e u 1 ~6 2 e is t r u e i f u 1 = u~

L E S S ® e u l u ~ e - - - u 1 < u 2

L E S S Q @ e u l u s e - - - u l < u~

B E T W E E N @ e u l u 2 % e - - - u l <u2 < u3

O R @ e e 1 . . . e , r e : = e l y e 2 v . , . v e r

A N D @ 6 e ~ . . . e r e : - - e 1 ^ e 2 ^ . , . ^ e r

NOT@ e e 1 e : = -~e 1

A STATISTICAL PROGRAMMING LANGUAGE SURVO 66 77

Classification and tabulating instructions.

The CLASS-instruction is used to define a set of rules by which the
variable values are mapped to class names or class number. Every set
of classification rules is named to allow subsequent reference. The classi-
fication facility is used in TABLE- and TRANSF-instruetions. The
detailed format of the CLASS-instruction is

CLASS@ (name of classification}
@]ass name 1} (lower bound} (upper bound}

(class name r) (lower bound} (upper bound}
M: (classification method}
S: (scale}

The classification rule defined by a CLASS-instruction is available
for use with any variable stored in the scale defined in the CLASS-
instruction. The variable values x which fulfill the condition ai < x < b i
are mapped to the class i (i = 1 , . . . , r) . The class names may be partially
identical; the classes may thus consist of several distinct intervals. The
class names are either nonnegative integers or any permissible SURVO
identifiers.

The speciality parameter 21I has two possible values: FAST and
SHORT, FAST guides the Compiler to apply direct value indexing in
table addressing. This method is sometimes wasteful in using the
computer core memory. SHOI~T method applies a normal search strategy
in table handling and therefore allows maximM storage economy.

Closely associated with the CLASS-instruction is a variable transforma-
tion instruction. This instruction is called TRANSF, and it defines a
new variable applying a classification rule. The value of the new vari-
able is the integer class number defined in a CLASS instruction or a
simple count 1, 2 , . . . if alphanumeric class names have been used. The
format of the TI~ANSF instruction is

TI~ANSF~ ~ u 1 c
M: m

IF : (condition}

where u = t h e new variable, u l = t h e variable to be classified, c=the
name of a classification rule defined earlier by a CLASS-instruction,
m = the value to be given if the -value of u 1 is outside the classification
intervals.

The TABLE-instruction is used to tabulate frequency counts, per-
centages, mean values and standard deviations. The instruction is de-

78 T . A L A N K O , S. M I Y S T O N E N , M. T I E N A R I

signed for construction of one-way and two-way tables. A TABLE-
instruction performs r tabulating tasks with the same column variable.
Tables in more dimensions are programmed applying conditional TABLE-
instructions. The tables should be given names for later reference. The
table may be used in analysis instructions. The CHI2-instruction can be
used to compute a contingency test for a frequency table. The VARAN-
instruction is able to perform a one-way or two-way analysis of variance
using mean value and frequency count tables. The structure of the
TABLE-instruction is as follows:

TABLE~

T :

M:
IF :

<column variable ul> (classification rule c>
(table name ni> (row variable at> (classification rule c1>
. . o ,

<table name n~> (row variable u~> (classification rule cr>
<variable to be tabulated>
(output selection parameters>
(condition>

Analysis instructions.

Estimation of mean values, s tandard deviations and correlation co-
efficients is performed using MEAN-, STDDEV- and CORl%EL-instruc-
tions in the following format:

<operator},
IF :
N:
W:

T:

(condition>
(name of moment ~abte)
(weight variable>
(output specification>
(output specification)

where u 1 , u r are variables. The sums of squares and sums of products
are saved as the moment table, which should be named for later reference.
These moments may be used in an analysis instruction, REGRAN or
TTEST.

The MEAN-instruction computes mean values only. STDDEV-in-
struction estimates both mean values and standard deviations. CORI~EL-
instruction computes, besides mean values and standard deviations, the
product moment correlations of the variables u 1 ,q~.. In addition to
other output options, the correlation matrix with mean values and stan-
dard deviations can be punched in an output form which conforms to
~he input requirements of standard multivariate analysis programs.

A S T A T I S T I C A L P R O G R A M M I N G L A N G U A G E $ U R V O 66 79

The percentage points of empirical distributions can be examined
using Fl~ACT-instructions. The estimation of the percentage points is
performed using the marginal distribution of a frequency table. The
variable subject to investigation appears as a row variable in this table.
The variable reference is hence performed indirectly using the table
name. The general format of the FRACT-instruction is:

FI~ACT~ (name of a table> q r s ,

where the non-negative integers q, r, s give the selection rules for per-
centage points selected out of Pc, P1 Pg~; P l = t h e variable value
which exceeds i percent of observed values. The instruction gives as
results Pq, Pq+~, Pq+2r P , .

The REGRAN-instruct ion fits a linear regression model

y = a o + alxl + . . . + arxr

to obse1~cations using the method of least squares. This analysis instruc-
tion is not designed to operate directly on the data. I t needs a correla-
tion matrix to get the necessary information. This arrangement has arisen
from the experience that slightly different models are often estimated
from the same set of variables. The format of the REGRAN-instruct ion
is

I~EGRAN~ (name of correlation matrix>

Y
X 1 • . . X r

In the same way as the use of the t%EGl~AN-instruction is based on
an earlier CORl~EL-instruction, the VARAN-instruetion uses a TA_BLE-
instruction. The format of this instruction is simply

VARAN~ (name of the table>.

The specification of whether the analysis of variance is performed in
one-way or two-way form, as well as the variable in question, appear
implicitely by a reference to the table. The variable subject to the
analysis of variance appear as a T-parameter in the corresponding
TABLE-instruction. The classifications used in the tabulation specify
the categories investigated using the analysis of variance, as well as
whether one-way or two-way analysis is required. There is a problem
in two-way analysis of variance when observation vectors fill the cate-
gory table in an uneven manner. In SUI~VO language a heuristic method
is used as an approximate solution in that case.

Any frequency table can be analysed for independence of its tabulating

80 T. ALANKO, S. MUSTONEN, M. TIENARI

variables using the Z2-test. This happens applying a CHI2-instructi0n
in the format

CHI2@ (name of frequency table}.

The mean values in different groups are tested for equali ty using the
TTEST-instruction. The sums and sums of squares needed for the com-
putations are provided by earlier STDDEV or CORREL instructions.
This information must have been given a reference name as a moment
table. The format of the TTEST-instruction is

either TTEST@ (moment table 1) (moment table 2}
or TTEST~ (moment table 1> (variable ul)

(moment table 2) (variable u2) .

In the former case it is required that the variables to be compared appear
in the same order in the moment tables.

An example of SURVO 66 programming.

In order to illustrate SURVO programming we consider a ~ecent
statistical research by Dr. Knight on computer characteristics [5]. In
this interesting paper the author investigates the functional dependence
of computer power and its rental cost. This particular data has been
chosen because we felt tha t most computer people are familiar with the
concepts of this research.

The material which Dr. Knight has treated statistically contains 92
data vectors derived from production models of electronic digital com-
puters. The at tr ibutes he has measured of each computer are: date in:
troduced, scientific power in operations per second, commercial power
in operations per second and inverse of computing cost in seconds of
computing per dollar. The data matrix in [5] is of the following form:

Date introduced Scientific Commer~al Inverse un~ ~
Month Year power (op/sec) power (op/sec) cost (see/t)

4 63 21420 9079 44.54
7 63 67660 23420 23.98

.

2 67 3127266 2755760 15.59
9 67 1086342 1021365 29.69

Computer no 303 is omitted here because of an obvious printing error.

A STATISTICAL PROGRAMMING LANGUAGE SURVO 06 81

We investigate the interdependence of the scientific power P of the
computer and the computing cost C using the technological age T of
the computer as an external variable to be compensated. The units of
measurement for P , C and T are 1000 op/sec, S/hour, and month re-
spectively. We will fit a logarithmic regression model

l n P = % + a 1 l n C + a ~ T

to the data. We also cross-tabulate the average power of computers in
three cost categories for each year 1963, . . . ,67 of computer announce-
ment. As data validity checks we require tha t the variables "month"
and "year" should not be outside the intervals 1-12 and 63-67 respec-
tively.

A reproduction of results is included. We can see that Grosch's famous
law P = kC 9 seems to fit well to Dr. Knight 's data.

SURVO program.

EVOLVING COMPUTER PERFORMANCE
TION, JAN. 1968
M®5
CALL@ X1 MONTH

@ X2 Y E A R
DEF@ X5 S: 1

@ M O N T H L : I U:12
@ YEAR L: 63 U: 67

DIV@ SPEED X3 1000 S: 1
DIV® COST 3600 X5 S:3
SUB~ Y1 68 Y E A R
MULT@ Y2 12 Y1
SUB~ AGE Y2 MONTH
LOG® L S P E E D X3 S: 3

®LCOST C O S T S : 3

CLASS@ COSTCL
CHEAP 0 30.000
MODER 30.001 90.000
E X P N S 90.001 500.000

M:SHORT S:3

TABLEG YEAR-
D E V E L COST COSTCL
T : SPEED

CORREL@ L S P E E D LCOST AGE N: CORR

1963-1967, DATAMA-

8~ T. ALANKO, S. ~USTONEN, M. TIENARI

R E G R A N e CORE
L S P E E D

END®
LCOST AGE

Results of the SURVO program.

EVOLVING COMPUTER PERFORMANCE 1963-1967, DATAMA-
TION, JAN. 1968

CLASSIFICATION: COSTCL
CLASS LIMITS
CHEAP .0000000 30.00000
MODEE 30.00100 90.00000
E X P N S 90.00100 500.0000

VARIABLES
NO. NAME SCALE

1 MONTH 0
2 Y E AR 0
3 X3 0
4 X4 0
5 X5 1
6 SPE ED 1
7 COST 3
8 Y1 0
9 Y2 0

10 AGE 0
11 L S P E E D 3
12 LCOST 3

EVOLVING COMPUTEI~ PERFORMANCE 1963-]967, DATAMA-

TION, JAN. 1968
N = 9 1

TABLE: D E V E L

COLUMN VARIABLE: YEAR
ROW VARIABLE: COST CLASSIFICATION : COSTCL

F R E Q U E N C I E S
63 64 65 66 67 TOTAL

CHEAP 6 4 10 7 4 31
MODER 7 11 9 5 1 33
E X P N S 6 6 6 6 3 27
TOTAL 19 21 25 18 8 91

A STATISTICAL P~OGRA~LLMING LANGUAGE SURVO 66 83

MEANS OF SPEED
63 64 65 66 67 TOTAL

CHEAP 5.5167 2.1000 20.810 1.6571 36.600 13.148
MOI)ER 13.243 54.909 50.500 439.08 154.80 106.10
EXPNS 198.32 1371.6 1123.9 1875.8 1419.7 1173.2
TOTAL 69.247 421.05 296.24 747.89 570~05 391.06

EVOLVING COMPUTER PERFORMANCE
TION, JAN. 1968
N = 91

CORR

VARIABLE MEAN STI)DEV

LSPEED 9.963143 3.113192
LCOST 3.905297 1.233960

AGE 32.97802 14.36120

C O E R E L A T I O N M A T R I X : CORR

LSPEEI) LCOST AGE
LSPEEI) 1.000 .8069 - .1797

LCOST .8069 1.000 .0539
AGE - . 1797 .0539 1.000

1963-1967, DATAMA-

EVOLVING COMPUTER PERFORMANCE 1963-1967,
TION, JAN. 1968

REGRESSION ANALYSIS

CORRELATION MATRIX: CORE

VARIANCE OF I)EPENDENT VARIABLE LSPEEI) 9.6920
RESII)UAL VARIANCE 2.9632

MULTIPLE CORRELATION .83322

REGRESSION COEFFICIENTS AND STANI)AED DEVIATIONS:

VARIABLE COEFF STI)I)EV T

CONSTANT 3.4946 .71522 4.8860
LCOST 2.0662 .14726 14.031

AGE - .04853 .01265 -3.8356

I)ATAMA-

Experiences and conclusions.

Our experiences so far indicate tha t the idea of a statistical language
seems to be feasible. We shall proceed to implement the system for a

8J~ T. ALANKO, S. ~USTONEN, M. TIEXARI

larger computer. We have also found that researchers have been able
to specify their statistical data processing jobs in the SUI~VO language
without any expert help.

We have observed a remarkable increase in the use of computers in
statistical applications. Par t of this increase in due to the ease of use
when the researcher is able to specify himself his information process-
ing needs. Par t of the increase comes from new applications where the
prohibiting cost of special programming is now to a large extent re-
moved.

There also exist some negative aspects which we have found in our
system. The method of scaling we have used in the system may sometimes
cause unpleasant pitfalls. When transferring the system to a faster
computer we will introduce more floating point computing to remedy
this drawback. There also exists a s teady demand from the users' side
for more sophisticated statistical techniques in the SURVO system. A
computer with large memory capacity is needed to satisfy this demand.
A final goal is an integrated system for all statistical manipulation
needed in usual statistical research.

In system design we have aimed at simplicity where possible. There-
fore the syntax of the SUI~VO language is chosen more in favour of
simple compiling than of syntactical beauty. There have been, however,
enough reasons to promote this research project as an interdisciplinary
effort in co-operation with computer scientists, statisticians and users of
computing services.

Acknowledgements.
We are grateful to Oy l~okia Ab, Electronics Division and the Uni-

versity of Tampere for the support they have given to this research.
In the implementation phase several persons have participated in the
project. We want especially to mention the valuable contributions of
Leena Lankinen, Tatu Kalin, Matti Ylinen as well as those of Pentt i
Kanerva and Karl Ki rkki inen .

LITERATURE

1. Couch, A.S., The Data.Text System Manual, Dept. of Social Relations, Harvard
University, Cambridge, Massachusetts, 1967.

2. Dixon~ W.J., Manual of BMD: Biomedical Computer Programs, ~ealth Sciences
Computing Facility, School of medicine, University of California, Los Angeles, 1964.

3. Mustonen, Seppo, T~ilastoilinen tietojenkdsittelyj~r~este~ SURIZO 66, Monistesarja,
Tampereen yliopiston tietokonekeskus, Moniste no 2, Tampere, 1967 (Statistical

A STATISTICAL PROGRAMMING LANGUAGE SURVO 8~ ~

D~t~ :Processing System SUR¥O 66, Reports of the Computing Centre in tim Uni .
vemi~y of T~mpere, l~ep0rt no 2, Tampere, 1967). I n Finnish.

4. Pollack, ~eymor, E~tab~ishing an Integrated Statistical Program ~brary,]8~h Annual
AClVI Conference.

5. Knight , E. K., Evolving Computer Performance 1963-67, Datamat ion Magazine, Jan -
uary 1968, pp. 31-35.

DEPARTMENT OF STATISTICS
COMPUTER SCIENCE DEPARTMENT
U:NIVERSITY OF ttELSLNKI
HELSI~KI, FINLAND

B I T 8 ~ 6

