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Abstract 

The total dispersion (sum of variances) and the generalized variance (determinant of the covariance 
matrix) do not meet certain essential requirements as measures of variability in the multivariate 
normal distribution. Therefore an alternative measure which is a generalization of the total dispersion 
is introduced and its formal and statistical properties studied. This measure is genuinely dependent on 
the covariances and it grows monotonously when new variables are included. The measure is strongly 
scale-dependent and not invariant even in orthogonal transformations, but it is shown that any 
invariant measure would violate the above-mentioned monotony requirement, 

Keywords: Generalized variance; Measure of variability; Multivariate normal distribution; Total 
variation 

. Introduction 

C o m m o n  rea l -va lued  m e a s u r e s  for  v a r i a t i o n  of  a p - d i m e n s i o n a l  n o r m a l  d is t r ibu-  

t ion  N (/J, 27) are  

t r 2 7 = 2 1 + 2 1 +  .-. + 2 p  

IZI : 21,~2 . . .  ,~,p 

and  

(1) 

(2) 

> 2p > 0 are  the  e igenvalues  of  the  c o v a r i a n c e  m a t r i x  Z. T h e  

0167-9473/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved 
PII S0 1 6 7 - 9 4 7 3 ( 9 6 ) 0 0 0 4 2 - 4  

where  21 _> ~ '2  ~-~ " ' "  

f o r m e r  one  is of ten cal led a total dispersion (Seber, 1984) and  used  as a m e a s u r e  of  
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variation in principal components analysis, for example. The latter one is called 
a oeneralized variance and it has an information theoretic background because the 
entropy of the multivariate normal distribution is 

1 
~(plog27z + 1ogl221 + p). (3) 

Both measures have serious disadvantages which should be well-known but 
seldom discussed in statistical literature. See, however,: Kowal (i971) and Johnson 
and Wichern (1988). The most serious handicap of measure (1) is that it observes 
neither covariances nor correlations. For example, if p = 3 and 

X =  1 p , 

p 1 

where p is high, say p = 0.999, (1) gives the value 3 while a correct value for total 
variation should be only slightly over 1 since the two last variables simply echo the 
variation represented by the first variable alone. 

The generalized variance (2) has the value (1 + 2p)(1 - p)2 = 2.998 x 10 -6 ~ 0 
which is absurd, too. In fact, if we have a system of p - 1 variables with a decent 
positive value of the generalized variance and add one more variable which is 
linearly dependent on the previous ones, the generalized variance collapses to 0 and 
the entropy (3) breaks down to - oe. 

To remove such defects, we have studied certain alternatives by starting from 
a specific idea presented in the next section. Our proposal for a measure of 
multivariate dispersion is 

P 

Mvar(1;) = max ~ a e i,12 ..,i- 1 (4) 
i = 1  

where 0i,122 . . .  i - -  1 is the residual variance of the ith variable when the previous, ones 
are held constant and where the maximum is sought over all permutations of 
variables. 

If we, for a moment ,  omi t  the max operation in (4), it is natural to assume 
that the total variation can be measured by taking the variance of the first 
variable as such, then taking the residual variance of the second variable 
after removing the variation explained by the first variable, then taking the 
residual variance of the third variable after removing the variation explained 
by the two first variables, etc. and, finally by summing these (residual) 
variances. 

The crucial question is: What is the right order of variables in this summation 
since the value of the sum depends on the order of the variables? Our answer to this 
question is: Take the maximum value (4). 
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Before giving formal support  for Mvar(2;) let us study its behaviour in special 
cases. We see immediately that  in the univariate case this measure is the same as the 
variance. Thus, the unit of measurement  is the variation in N(0, 1). 

When p = 2, we have 

Mvar(,~) = a~ + (1 - p 2 ) a 2 ,  

where p is the correlation coefficient and the order of the variables must be selected 
so that 0-1 > 0-2. For  example, in case 0-1 = 0"2 = 1 we obtain Mvar(,~) = 2 - p 2  

and this gives 2 if p = 0 and 1 if [p [ = 1. 
Fig. 1 shows how different measures of total variability behave in the two- 

dimensional case as a function of the standard deviation of the second variable. 
In the previous special case of 3 variables with a constant correlation p = 0.999 

we have 

Mvar (£)  = 3 - p2(3 + p)/(1 + p) ,,~ 1.0035. 

Please note that in this case the lowest possible value of p is - ½. Thus, Mvar(2;) is 
always finite. 

In the p-dimensional distribution we have 

2 = t r Z  Mvar(,~) = 0-2 + 0-2 + ... + 0-p 

when the variables are uncorrelated and in general 

2 max(0-2,0-~, ... ,0-~) < Mvar(2;) < 0-2 + 0-2 + ... + 0-9, 

where the lower limit is attained when all correlations are +__ 1. If all variances are 
equal to 1, 2~ is a correlation matrix and 

1 < Mvar(2;) < p. 

2. Background of the measure 

The idea of this paper arose from a desire to find a maximally parsimonious 
representation for a random vector X = (X1, ... ,Xp) r from N(/~, 2;). Any such 
a vector can be generated by a linear transformation from U = ( U 1 ,  . . . ,  Up)  T where 
U is N(0, I) in the form 

x = c u  + (5) 

where C is a p x p-matrix and 

~, = C C  ~. (6) 

Decomposi t ion (6) can be selected in different ways. It becomes, however, unique 
if C is lower triangular, Then (6) is a Cholesky decomposition. By default (6) is 
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Fig. 1. Mvar(,~) as a function o f x  for tr 1 = 1, 0" 2 = X,  p = 0(0.1) 0.9 (solid line), generalized variance 
for the same distr ibutions (dotted line), Total  dispersion (uppermost  solid line). 

unique for any non-singular ,~. In singular cases where some of the pivot (diagonal) 
elements of C become 0, a unique representation is achieved by rearranging 
variables X1, ... ,Xp so that when r = rank(?) ,  the r first variables are linearly 
independent. Then the p - r last columns in C are set 0. 

To clarify the situation we write (5) componentwise as follows: 

Xx = c 1 1 U 1  + # 1 ,  

X2 = c21 U1 -~- (?22 U2 4- ]-/2, 

Xp  = CplU 1 -~ cp2U 2 + ... + cppUp + [,,lp. 

It is natural to assume that this representation should be selected - by sorting 
X's  - in such a way that each diagonal element of C 'dominates '  elements below 
it, i.e. 

cjj ~ Icul, j = 1 . . . . .  p - 1, i = j  + 1 . . . . .  p. (7) 

Then each Uj is introduced into the set of X variables with a 'great' weight cjj and 
the later 'lesser' contributions of U~ may be neglected. 

The maximal dominance, and parsimony, is attained when the X's  are set in the 
order that maximizes 

s + . . .  (8)  
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since the total dispersion (1) which has the same value for any order  of variables can 
be writ ten in the form 

P P P 
t r Y '  = t r C C  T = E E C2 = E C2 + E C2" 

j = l  i=j i=1  i>j 

Thus,  maximizat ion of (8) implies minimizat ion of the sum of squares of the 
off-diagonal elements of C. 

On the other  hand,  the elements of C have simple statistical interpretations.  In 
particular, we have 

Cu = cri,12 . . . . .  i - 1 ,  i = l ,  . . .  , p  (9) 

which means  that  maximizat ion of (8) leads directly to measure Mvar(,~). 
Another  impor tan t  proper ty  of C is the following. If C is par t i t ioned as 

FC11 0 l 
c = LC21 C22 

(10) 
i 

where Cl l  is j x j  lower tr iangular  and consequently C22 is (p - j ) x  (p - j )  lower 
triangular,  we get 

~22 .1  ~--" C 2 2 c T 2  (11) 

where '~22.1 is the partial covariance matrix of variables X j + ~ ,  . . . , X p  when 
variables Xx, . . . ,X~ are held constant.  

To prove (9) and (11), we write (5) in a part i t ioned form 

F "l F c',° IF "l F"'"l 
x = Lx( ,j = LC , j L + 

(12) 

and study the condi t ional  distr ibution of the p - j  componen t  vector X (2) when X ~ 1) 
is held constant ,  say, X tl) = e (1). 

We assume as before that  i f r  = rank(,~) is less than  p, the variables are in such an 
order  that  the r first ones are linearly independent .  By setting the last p - r columns 
of C to 0, representat ion (12) becomes unique. 

If now rank(Z11) = rank(Cx 1) < J, we have C22 = 0. Thus  in this case all vari- 
ables o f X  t2) are linearly dependent  on X ~1) and (9) and (11) are trivially true. In the 
full rank case, rank(~l  1) = j and  also Ca i is non-singular.  Hence, we obtain from 
(12) 

v~ ~(1) _= C l I U  (1) -4-,11 (1) = c (I) 
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which implies 

U ~1) = C l l  1 (c (1) _/[1(1)). 

Similarly, we have 

X(2) = C21U~I) ..~ C22 U(2) _~_ ~u(2) = C22U(2) .~ C21C111(c(1)  _ p(1)) + p(2). 

This tells that in the conditional situation X TM is generated by a linear transforma- 
tion from p - j  independent N(0, 1) variables Uj+ 1, . . . ,  Up with a coefficient matrix 
C22. Then the conditional distribution of X TM is multivariate normal with the 
covariance matrix ' ~ 2 2 . 1  = C22 cT2 which proves (11). Since £722 is lower triangular, 
(9) follows immediately. 

3. Properties of the measure 

I n  addition to features presented in the introduction, Mvar(2~) satisfies the 
following essential condition. We use an alternative notation 

Mvar(X) = Mvar(Xx, . . . ,Xp) 

Where variables X1, . . . ,Xp indicate the distribution in place of their covariance 
matrix S. Then 

Mvar(X1, ... ,Xp) > Mvar(X1, ... ,Xp-1),  (13) 

where the equality is possible only if Xp is linearly dependent on X1,  . . . ,  Xp_ 1- To 
prove this statement we represent X r by 'linear regression' as 

X p  = ]~0 + ]~lXl 21- ]~2X2 + "'" + ~ p - l X p - 1  J¢- e, 

where ~ is N(0, a 2) and independent of X1 . . . .  , X p - 1 .  Then also a 2 2 O ' p ,  12  . . .  p _ 1 

and 

Mvar(X1, ... ,Xv) > Mvar(X1, ... ,Xp_ 1) + a 2 

which confirms (I3). Since a 2 is 0 only i f X  v is linearly dependent on X1,  ... ,Xp_ 1, 
the equality is possible in this case only. However,  even then the measure may grow 
if the variance of the  new linearly dependent variable Xp is high enough. 

The simplest example of such a situation is the following, Let X1 beN(0,  a~) and 
X2 = ~,XI. Then Mvar(X1) = a~ and 

Mvar(X1, X2) = al  2 = Mvar(X1) if I~1 --- 1 

but 

Mvar(X1,X2) = ~2a2 > Mvar(X1) if 1~[ > 1. 
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This feature is acceptable since no measure of variability can be scale-invariant. The 
important fact told by (13):JS ~that Mv~ar(Z) does not collapse like (2)when linear 
dependencies occur: Similarly, it is evident' that 

Mvar(~X1, X2, • .... Xp) > Mvar(X1, X2 . . . .  ,Xp) when I~1 > 1, 

4. Computational aspects 

Calculation of Mvar(~) means in principle an exhaustive search over all 
permutations of variables. One cannot assume that the magnitudes of variances 
in a straightforward way would determine the optimal order of variables. 
For example, the variable with the maximal variance is not necessarily the first 
one. 

An exhaustive search over p! permutations is infeasible in higher dimensions. 
Therefore, some short-cuts must be found. Fortunately, a simple stepwise proced- 
ure is available. It does not give the optimal solution in all cases but finds always 
a value which is close enough to Mvar(Z). 

The stepwise procedure is carried out p times by starting once from each variable. 
In round i, variable X~ is taken as the first one and the second variable is selected by 
maximizing 

2 • aj,~,j g= i 

with respect to j. The third variable is selected by maximizing 

¢72, ij, h ~ i , j  

with respect to h, and so on. The solution is the one for which the sum of these 
residual variances is maximal. 

In each of these p stepwise rounds, everything is obtained simply by per- 
forming the Cholesky decomposition stepwise. When selecting the kth variable, 
the residual variances to be compared are calculated by using (11). After 
selecting the kth variable, onlY p - k last columns of the decomposition have to be 
updated. 

A C program has been written for both the exhaustive and stepwise solution. The 
source code is freely available from the author. This code has been implemented in 
the SURVO 84C system (Mustonen, 1992) as an operation MULTVAR. By 
default this operation gives the stepwise solution. The stepwise solution is found 
in less than 2 seconds for p = 20 an'd in less than 5 minutes for p = 60 on a 486 PC 
(66 MHz). An exhaustive search already for p = 20 would take almost 400 million 
years! 

All computations in sequel have been performed by the MULTVAR-operation. 
The simulation experiments have been carried out by making suitable macros on 
SURVO 84C. 
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The next display tells how Mvar(Z) is computed: 

2 
3 
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i0 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
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23 

*p=6 rho=0.8 
*MAT A=IDN(p,p, l-rho) / p*p diagonal matrix, l-rho on the diagonal 
*MAT P=CON(p,p, rho) / p*p matrix of constant elements rho 
*MAT P=P+A / corr.matrix with all correlations =rho 

* MULTVAR P, CUR+ I 
*Mvar[P]=2.3956 (Total variability in a 6*6 matrix) 
*MAT LOAD COVVAR.M,END+2 / Optimally permutated covariance matrix 

*MAT C=CHOL(COVVAR.M) / *C~CHOL(Permutated_covariance_matrix) 6*6 
*MAT LOAD C, ##. ###, CUR+I 
*MATRIX C 
*CHOL (Permutated_covariance matrix ) 
*III i 2 3 4 5 6 
* I 1.000 0.000 0.000 0.000 0.000 0.000 
* 2 0.800 0.600 0.000 0.000 0.000 0.000 
* 3 0.800 0.267 0.537 0.000 0.000 0.000 
* 4 0.800 0.267 0.165 0.511 0.000 0.000 
* 5 0.800 0.267 0.165 0.120 0.497 0.000 
* 6 0.800 0.267 0.165 0.120 0.095 0.488 

5 

4 

3 

2 

1 
1 

¢. 
../.'°" 

. . / "  

i L i 
2 3 4 5 

Fig. 2. Exhaust ive  vs. s t e p w i s e  s o l u t i o n  for 1 0 0 0  r a n d o m  7 x 7 covar iance  m a t r i c e s .  

All text and commands the user has typed in the edit field are shown here in italics. 
At first (lines 2-5) a 6 x 6 correlation matrix P with a constant correlation p = 0.8 is 
created by the matrix interpreter. The MULTVAR command on line 7 gives its 
results on lines 8-9. The optimal Cholesky decomposition is computed and printed 
by MAT commands on lines 11-12. 

To check the efficiency of the stepwise solution, 1000 7 x 7 matrices A were 
generated. Each element of A's was a random number from a uniform distribution on 
(-0.5,0.5).  For each A a 'covariance matrix' Z = A A  r was computed and 
MULTVAR was applied to these X's by using both exhaustive and stepwise method. 
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Fig. 2 illustrates a good correspondence between the true solution and the 
stepwise solution. In 853 of those 1000 cases, the stepwise solution was optimal. The 
largest observed relative deviation was 2.6%. 

Also other simulation experiments have been performed. All these trials show 
that relative error of the stepwise solution is insignificant in practice. 

Stepwise_computation of Mvar() /* in C pseudocode */ 
{ 
<<input: p x p covariance matrix S>> 
Mvar=-l.O; eps=O.000001; 
for (i=l; i<=p; ++i) 

{ 
<<permutation vector q=(i,1,2 ..... i-l,i+l ..... p)>> 
Mvar2=sum2_Cholesky ( S, q) ; 
if (Mvar2>Mvar) { Mvar=Mvar2; <<optimal_q=q>> ) 
} 

<<output: Mvar and optimal_q>> 
) 

sum2 Cholesky(S,q) 
{ 
sum2=S[q[l],q[l]] ; 
for (k=2; k<=m; ++k) 

{ 
partial Cholesky(C,S,q,k-1) ; 
if (C[q[k-l]] [q[k-l]] <<not dominant in column k-l>>) 

return (-i.0) ; 
var_max=- 1.0 ; 
for (h=k; h<=m; ++h) /* fLnd max. res.variance */ 

( 
s=OoO; /* see (ii) */ 
for (j=k to h) s=s+square_of(C[q[h]] [q[j]]) ; 
if (s>var_max) { var max=s; j_max=j; } 
} 

<<swap q[j_max] and q[k]>> 
sum2 = sum2 +var_max; 
} 

return ( sum2 ) ; 
} 

partial_Cholesky(C,S,q,h) /* update S=CC' from column h onwards */ 
{ 
for (i=h; i<=p; ++i) for (j=l; j<=i; ++j) 

{ 
a=S[q[i] ] [q[j] ] ; 
for (k=l; k<=j-l; ++k) a=a-C[q[i]] [q[k]]*C[q[j]] [q[k]]; 
if (i==j) 

{ 
b=sqrt(fabs(a)) ; if (b<eps) b=eps; 
C[q[i]] [q[i]]=b; 
} 

else 
{ 
b=C[q[j]] [q[j] ] ; 
if (b>0.O) C[q[i]] [q[j]]=a/b; 

else C[q[i]] [q[j]]=O.O; 
C[q[j]] [q[i] ]=0.0; 
} 

} 
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5. Examples and potential applications 

As an example of how Mvar(Z) behaves on different levels of dependency,  we 
start from a p x p correlation matrix P with a constant  correlation coefficient p for 
each pair of variables and let p vary  between 0 and 1. In this case C in the Cholesky 
decomposi t ion P = C C  T is 

where 

C = 

~1 0 0 .. 

0 . .  

f l l  f12 ~3 "" 

. .  

. .  

and 

0 

0 

0 

0 ' 

~p 

~ = (1-- p) [1 +( i - -1 )p] / [1  + ( i - -2 )p ] ,  i =  1 , . . . ,p  

f12 = p2(1 _ p)/{[1 + (i -- 1)p][-1 + (i -- 2)p], i = 1, . . .  ,p -- 1. 

The simple structure of C is detected from the numerical example in the previous 
chapter. The formulas for ~i and fl~ are found by recursive computa t ion  and verified 
by induction. Then we have 

P 

Mvar(P)  = (1 - p) ~ [1 + (i - 1)p]/[1 + (i - 2)p] (14) 
i = l  

since, due to complete symmetry, the sum of residual variances has a constant  
value. We can see from (14) that for large p and i values the contr ibution of a new 
variable tends to 1 - p. 

This becomes evident also by noticing that a random vector X from N(0, P)  can 
be created from p + 1 independent N(0, 1) variables Uo, U1, . . . ,  Up by 

X l  = x/ /pUo + x//'l - p Ul ,  

X2 = N/PUo + N / / 1 -  pU2,  

Xp= x/PUo + x / 1 -  pUp. 

Thus, there is a ' common factor' Uo with 'communali ty '  p and unique factors 
U1, ..., Up with variances 1 - p each. 

To give a better insight about  the nature of Mvar(Z), certain other special cases 
of the multivariate normal distribution deserve short comments. The following two 
results are conjectures based on extensive computat ional  trials on the S U R V O  84C 
system and seem to be valid at least for p < 90. 
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If in (5) C is lower triangular with C~j = 1 for all i > j which means that X's are 
cumulative sums of independent  N(0, 1) variables, the measure (4) has an interest- 
ing representation 

Mvar(~) = p[log2p/4 + 1 -- e(p)], 

where 0 < e(p) < 0.01 and in particular e(p) - 0 when p is a power of 2. In this case 
(2) is 1 for all p and (1) is p(p + 1)/2. 

If a p x p correlation matrix P has the structure known from autoregressive 
models 

p = [pli-Jl], 

we have for all values of p an approximate linear representation 

Mvar(P) ,,~ ap + b. 

For small values of p, say IPl < 0.5, a ~ 1 - pZ and b ~ pZ. In this case again the 
generalized variance (2) does not  make sense since 

log IPI = (p - 1)log(1 - -  p 2 )  

(although linear) is a decreasing function of p. 
Next we compare two covariance matrices ,~1 and ~2 having the same correla- 

tion structure but different variances. When variation is measured by the generaliz- 
ed variance (2), Kowal (1971) pointed out that det(,~0/det(~2) is a ratio of geometric 
means of the variances and does not depend on correlations at all. Kowal con- 
sidered this an unfortunate property. The total dispersion (1) has the same dis- 
advantage. 

To indicate that Mvar(~) works better and observes correlations in a reasonable 
manner,  we consider a special case with p = 3. Let us have 

~1 = P 1 p , ~2 = 0 3 

p p 1 0 0 

0 

0 ,~1 

2 Ei °°] 3 0 . 

0 2 

By direct computat ion it is easy to show that Mvar(22) /Mvar(~l)  is 

[29 - 13p 2 - 4p2(1 - p)/(1 + p)]/[3 - p2(3 + p)/(1 + p)]. (15) 

Thus, (15) grows smoothly from 29/3 (p = 0) to 16 (p = 1). The  ratio of generalized 
variances is 256 and the ratio of total dispersions 29/3 for all values 0 < p < 1. The 
latter value coincides with (15) only for p = 0. 

As a measure of variability Mvar(Z) may also be useful in telling how much of 
variation of a given random vector is explained by another. Assume that X is 
N(/~, ,~) and parti t ioned into two subsets X ~1) and X (2) where X ~1) is q-dimensional. 
Then 

Rz(x ~1), X ~2)) = 1 - Mvar  (,~11.2)/Mvar(~l 1) (16) 
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Fig. 3. Ratio Mvar(Z2)/Mvar(Z1) as a function of p. 

gives the proportion of the total variability of X tl) which is explained by X t2). in 
case q = 1 (16) is the same as the squared multiple correlation coefficient. 

6. Estimation of Mvar(2~) 

In samples from N(/~, ,~) an analogous estimate for Mvar(,~) is Mvar(S) where 
S is the sample covariance matrix. To study properties of Mvar(S) a series of 

Table 1 

p Mvar(P) Mean of Relative RMSE Relative 
Mvar(S) bias R M S E  

0.0 5 4.908 - 0.018 0.328 "0.066 
0.1 4.916 4.835 - 0.016 0.321 0.065 
0.2 4.708 4.640 - 0.014 0.306 0.065 
0.3 4.413 4.372 - 0.009 0.283 0.064 
0.4 4.054 4.036 - 0.004 0.259 0.064 
0.5 3.642 3.647 0.001 0.237 0.065 
0.6 3.185 3.220 0.011 0.214 0.067 
0.7 2.689 2.738 0.018 0.194 0.072 
0.8 2.157 2.214 0.026 0.173 0.080 
0.85 1.880 1.938 0.031 0.167 0.089 
0.9 1.594 1.651 0.036 0.159 0.100 
0.925 1.448 1.499 0.035 0.156 0.108 
0.95 1.301 1.346 0.035 0.153 0.118 
0.975 1.151 1.184 0.028 0.147 0.128 
0.99 1.061 1.083 0.021 0.145 0.136 
0.999 1.006 1.014 0.008 0.143 0.142 
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simulation experiments were performed in case $ = P with a constant  correlation 
p and p = 5 for various values of p. The sample size was 100 and the experiment 
was repeated 10'000 times for each selected p value. 

These experiments indicate that the distribution of Mvar(S) is close to normal  
for p < 0.9. For  the greatest values of p it seems to be positively skewed. For  
the most  values of p there is a slight bias. The main results are summarized in 
Table 1. 

The bias is negative for p values up to about  0.5 and positive for greater ones as 
seen from Fig. 4. 

In fact t he re  must  be a negative bias for p = 0 since with probability 
1 Mvar(S) < tr(S) but  tr(S) is an unbiased estimate of tr(P) = Mvar(P) for p = 0. 
When p tends to 1, the bias will tend to 0 since for p = 1, Mvar(S) = s 2 where s 2 is 
the common  sample variance of variables. Fig. 5 tells how the relative RMSE grows 
with p. 

0.05 

-0.05 

0 0 0 
0 

I I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. 4. Relative bias of Mvar(S) for various p values. 
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Fig. 5. Relative RMSE of Mvar(S) for various p values. 
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It is evident that Mvar (S) i s  a consistent est imator of Mvar(2;). For  example, if 
the sample size is 1000, for p = 0.8 the relative bias is only 0.012 and R M S E  is 0.057. 
The dependency of the bias and R M S E  on the sample size and S will be a target for 
a further study. 

7. Concluding remarks 

As pointed out  earlier, Mvar(Z) is strongly dependent  on scales of variables. It is 
not  even invariant in orthogonal  transformations as measures (1) and (2) are. If such 
an invariance were required, it would m e a n  that for a measure M()  

M(X,) = M(T T r) 

for any orthogonal  matrix T. By selecting T = U 7 from the spectral decomposi t ion 
~, = UAU T we would have M(~;) = M(A) and the measure would be a function of 
eigenvalues as (1) and (2) are. Such a measure M based on eigenvalues only conflicts 
certain essential requirements. 

For  example, in case X = (X1, X2) T 

the eigenvalues are 21 = 1 + p and 22 = 1 - p and 

A =  0 1 - p  

is the covariance matrix of principal components,  say Y = (Y 1, Y2) T. If the measure 
M is invariant in an orthogonal  transformation Y =  UTX we have 
M(X1, X2) = M(Y1, Y2). In the special case p = 1 we should have M(X1, X2) = 
M(X1) -- 1 since X1 -- X2 with probabil i ty 1 and in a univariate case, M gives the 
variance of the variable. Hence, we obtain an inequality 

M(Y1, Y2) = M(X~,X2)  = 1 < 2 = M(YI)  

which violates the mono tony  requirement (13). 
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