
SURVO 84C

SURVO 84C Contributions 3

Programming SURVO 84 in C

Seppo Mustonen

University of Helsinki

Department of Statistics

1989

SURVO 84C

SURVO 84C is an integrated system for statistical analysis, computing,
data base management, graphics, desktop publishing, etc.
Through its unique editorial interface, SURVO 84C forms a general
environment for many kinds of applications.

SURVO 84C Contributions is a series of papers devoted to various new
features of the SURVO 84C system.

Editor
Seppo Mustonen
University of Helsinki, Department of Statistics
Aleksanterinkatu 7, 00100 Helsinki, Finland

Copyright © 1989 by the author
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

The contents of this paper are furnished for informational use only,
are subject to change without notice, and should not be construed as a
commitment by the author. The author assumes no responsibility or
liability for any errors or inaccuracies that may appear in this paper.
The software described in this paper is furnished under license and may
be used or copied only in accordance with the terms of this license.

This paper was composed and written using SURVO 84C. The original of
the paper was created as a PostScript file by the PRINT operation of
SURVO 84C. Proofs were printed on the QMS-PS 810 PostScript printer
and the final camera-ready copy was set on a Linotype 300 typesetter
at PrePress Studio, Helsinki.
The final copies were printed from the camera-ready copy by University
Press, Helsinki, Finland.

 ISSN 0786-2792
 ISBN 951-45-4848-5

SURVO 84C

SURVO 84C Contributions

1. S.Mustonen: PostScript printing in SURVO 84C, 1988
2. S.Mustonen: Sucros in SURVO 84C, 1988
3. S.Mustonen: Programming SURVO 84 in C, 1989

SURVO 84C

SURVO 84C Contributions 3

Seppo Mustonen
Programming SURVO 84 in C

 1. Introduction 1
 2. SURVO 84C processes 3
 3. Example of a SURVO 84C module 5
 4. Edit field 15
 5. Shadow lines 17
 6. Space allocation 19
 7. Include files 20
 8. Libraries 21
 8.1 SURVO.LIB 22
 8.2 SURVOMAT.LIB 67
 8.3 DISTRIB.LIB 79
 Index to SURVO 84C library functions 85

Printed in Finland 1989

SURVO 84C

SURVO 84C Contributions No. 3

Programming SURVO 84 in C

Seppo Mustonen
Department of Statistics, University of Helsinki, Finland

Abstract: The SURVO 84C system can be extended without any limits by new
program modules written in C. In this paper, the program structure of SURVO
84C is described. Instructions for making program modules are given. The tools
developed for SURVO 84C programming are presented as C library functions.

Keywords: SURVO 84C, C language, Programming tools

1. Introduction

 SURVO 84C is an open system. It provides tools for making extensions
in different ways. Many of the enhancements can be accomplished by
means of sucros described in "Sucros in SURVO 84C" by Mustonen
(1988). Also the matrix interpreter (MATRUN operations), the touch
mode and the editorial computing mode, for example, are useful when
making such extensions. Furthermore, some of the general SURVO 84C
operations (like PRINT and PLOT) provide their own special programming
tools.
 In the most demanding tasks, the only general way for making exten-
sions is to use the programming language C since the entire SURVO 84C
system has been programmed in C.

 SURVO 84C is a modular system consisting of one main program (the
editor) and of numerous modules which are called by the main program
when needed. Each module itself is written like any independent program,
but it can be executed only as a child process when its parent process
(main program) is present and delivers all input information to the module.
When a SURVO 84C module terminates, it disappears from the memory
and the control returns to the main program. It is up to the module how it
renders its results. Usually results are printed on the screen and saved in an

SURVO 84C

 2 Seppo Mustonen 1 Aug 1989

output file or they are displayed in the edit field. Each module in turn may
have children which are written independently but receive sustenance from
their mother.

 An important link between the main program and the modules (and thus
also between different modules) is the edit field, which among other things
carries vital input information to the modules. The main program selects
the module needed for each particular task according to the activation pro-
cedure initiated by the user. In most cases the activated line in the edit
field holds that information. For example, when the user activates a line
starting with the word PPRINTRINT, the main program ‘knows’ that a program
!PRINT.EXE should do the job and calls it immediately. Thereafter it is
the task of !PRINT.EXE to read parameters and other input information
(like specifications written around the activated line).
 This convention guarantees that there can be as many modules in the
system as there are permitted program file names (starting with ‘!’). Since
each module visits the central memory in turn, it is only the disk capacity
that may limit the size of the system.

 Instead of one large program, we have a family of smaller programs
which can cooperate. Such a system is easier to maintain. For example,
each module usually consists of several compilands which are compiled
separately and then linked together. There is no need to link the modules
to each other or to the main program. However, the environment created
for the programmer guarantees that making a SURVO 84C module is like
extending one large uniform system which could be one huge program.

 When programming a new module, it is not necessary to know about the
requirements of other modules (assuming that we are not using conflicting
names for modules). In many cases, however, it is good to be familiar with
other solutions and use ready-made tools generated earlier for similar pur-
poses.
 In fact, programming is highly simplified when various tools which have
been developed earlier are employed whenever possible. The standard
tools of SURVO 84C are available as libraries. The main program and all
existing modules have been written in the C language. In principle, any
other language producing executable program files (like Pascal, Fortran,
Assembler) could be used as well, but for the time being they are lacking
the SURVO 84C library support.

 The main purpose of this paper is to provide information for those peo-
ple who would like to make more SURVO 84C modules. We give some
rules which should observed and a great deal of recommendations. Finally,
we describe the tools available and give examples of their use.

SURVO 84C

 Programming SURVO 84 in C 3

 Although anyone who writing a SURVO 84C compatible program can
select the tools as he/she wishes, there are clear advantages to following
the recommendations. Generally adopted tools create a common style in
the system structure that in many ways helps the user. For example, when
the user tries to test a new operation of SURVO 84C, he has the right to
expect it to work according to patterns encountered earlier in similar oper-
ations. The parts of the SURVO 84C ‘world’ should resemble each other
as much as possible, at least formally. This increases the confidence of the
user to the system. On the other hand, we don’t wish to spoil the joy of in-
venting new approaches. As an open system SURVO 84C will permit and
tolerate several alternative solutions in any application area.

 The prerequisities for a SURVOC 84C programmer are that he/she is able
to use the C language and knows the idea and basic solutions of SURVO
84C from the user’s point of view.
 The current technical requirements are the Microsoft C Compiler (Ver.
5.10 or newer), the SURVO 84C libraries and the SURVO 84C system it-
self. The present implementation of SURVO 84C is for the MS-DOS oper-
ating system. Due to the origin and portability of the C language, it is ob-
vious that versions for Unix-like operating systems at least are not difficult
to develop.

2. SURVO 84C processes

 The term process is described in the Microsoft C run-time library refer-
ence as follows (p.73):

The term "process" refers to a program being executed by the operating
system. A process consists of the program’s code and data, plus informa-
tion pertaining to the status of the process, such as the number of open
files. Whenever you execute a program at the MS-DOS level, you start a
process. In addition you can start, stop, and manage processes from within
a program by using the process control routines.

 The possibility to start up another process during the program as a
‘child’ process is crucial in the construction of SURVO 84C. There are a
few alternatives for calling child processes. The new process may overlay
the parent process or the parent process may stay resident during the
child’s execution. Both alternatives are used in SURVO 84C, and in most
cases the latter one, since the main program remains always resident until
the end of the session.

 As a consequence of this construction principle, we can always call
other programs easily while staying in SURVO 84C in the same way as
SURVO 84C calls its children. The only provision is that there is

SURVO 84C

 4 Seppo Mustonen 1 Aug 1989

enough memory left for the new process and it can be accessed from the
current directory (of SURVO 84C). Thus all MS-DOS commands may be
given like any SURVO 84C command directly from the edit field by put-
ting the ‘prompt’ symbol ‘>>’ before the command and by activating it like
a SURVO 84C operation. For example, >>DIR A:*.EDTDIR A:*.EDT lists all edit files
on disk AA::.
 Similarly we can start any executable program (.EXE or .COM) or batch
file (.BAT) during the SURVO 84C session. For example, >>SS always
starts a new SURVO 84C copy as a child of the current one (since S.EXE
is the main program of SURVO 84C). Upon returning from child S we are
back in the original SURVO 84C session.

 Hence most programs without modifications may serve the SURVO 84C
system as its child processes. This is very helpful for experienced users,
since they can employ SURVO 84C as a natural extension of the operating
system and do everything while staying in SURVO 84C.
 However, to make a program a true SURVO 84C module some considera-
tions related to input and output should be taken into account. Also the
general requirements and the style of SURVO 84C programming may imply
modifications in existing programs.
 A formal distinction between a SURVO 84C module and a general
program is that the file names of directly callable SURVO 84C modules
start with ‘!!’. Furthermore, the SURVO 84C modules receive all the input
information directly from the main program (editor) so that they cannot be
executed alone.

 The link between the main program and a module is one address given
by the main program as a parameter and pointing to an array of pointers.
This array tells the addresses of the SURVO 84C system parameters and
variables so that the module may use the same information as the main
program does. Then, from the programmer’s point of view, the module is
an integrated part of the main program. For real access to those parameters
and variables, the module has to call first an initiation function (s_init).
 During its work, the module may update various system variables (for
example, write results in the edit field) so that the effects of the module
can be seen immediately after returning to the main program.
 The cooperation between the main program and the modules strengthens
the system. The system is more than a collection of different programs.
Therefore it is important to take full advantage of these possibilities for
interaction when creating new modules.

SURVO 84C

 Programming SURVO 84 in C 5

3. Example of a SURVO 84C module

 The idea and practice of making SURVO 84C modules is first illustrated
by an example. To save space and to highlight the main principles, we
shall describe coding of a simple module for calculating weighted means
from statistical data.
 Usually it is good to start by making a synopsis from the user’s point of
view and imagine how the things should look if we already had the new
operation. In this case we could type following text in the edit field:

 13 1 SURVO 84C EDITOR Wed Feb 15 11:46:19 1989 D:\C\PROG\ 100 100 13 1 SURVO 84C EDITOR Wed Feb 15 11:46:19 1989 D:\C\PROG\ 100 100 00
 1 *SAVE TEST1 1 *SAVE TEST1
 2 * 2 *
 3 *Here is our data set: 3 *Here is our data set:
 4 *DATA TEST 4 *DATA TEST
 5 *Name Sex Test1 Test2 Test3 5 *Name Sex Test1 Test2 Test3
 6 *Karen F 1.45 3.46 5 6 *Karen F 1.45 3.46 5
 7 *Charles M 3.22 2.43 3 7 *Charles M 3.22 2.43 3
 8 *Anthony M 5.00 3.27 2 8 *Anthony M 5.00 3.27 2
 9 *Lisa F -0.76 4.03 3 9 *Lisa F -0.76 4.03 3
 10 *Mike M 1.37 1.88 3 10 *Mike M 1.37 1.88 3
 11 *William M 4.65 - 2 11 *William M 4.65 - 2
 12 *Ann F 2.16 4.98 2 12 *Ann F 2.16 4.98 2
 13 * 13 *
 14 *MASK=--AAW / to indicate selection of variables (columns) 14 *MASK=--AAW / to indicate selection of variables (columns)
 15 *CASES=Sex:M / to indicate selection of observations (lines) 15 *CASES=Sex:M / to indicate selection of observations (lines)
 16 * 16 *
 17 * 17 *MEAN TEST,19MEAN TEST,19__
 18 * 18 *
 19 * Means of variables in TEST N=4 Weight=Test3 19 * Means of variables in TEST N=4 Weight=Test3
 20 * Variable Mean N(missing) 20 * Variable Mean N(missing)
 21 * Test1 3.307000 0 21 * Test1 3.307000 0
 22 * Test2 2.433750 1 22 * Test2 2.433750 1
 23 * 23 *

 Here we have a small application where the data set is on edit lines 4-12,
the MEAN operation on line 17 and results (which we hope to receive af-
ter activation of the MEAN line) on lines 19-22.

 We assume that the MEAN operation has the following syntax:

MMEAN <SURVO_84C_data>,<first_line_for_the_results>EAN <SURVO_84C_data>,<first_line_for_the_results>

 To select variables and observations, we have used two extra specifica-
tions (on lines 14-15). There MMASK=--AAWASK=--AAW selects only columns #3 and
#4 ((Test1,Test2)Test1,Test2) for the analysis and column #5 ((Test3)Test3) is used as a
weight variable. CCASES=Sex:MASES=Sex:M indicates that only observations with
SSex=Mex=M are selected.

 We shall see that there will be still more options available if the MEAN
module is written according to the standards of SURVO 84C, and all this
is achieved with a minimal effort by using ready-made tools of the
SURVO 84C libraries.

SURVO 84C

 6 Seppo Mustonen 1 Aug 1989

 It should also be noted that the structure of more complicated modules
does not differ from that of this example.

 The !MEAN module has only one compiland and its main function is
listed below in several parts. The line numbers have been added for easier
reference.

 1 /* !mean.c 21.2.1986/SM (19.3.1989) 1 /* !mean.c 21.2.1986/SM (19.3.1989)
 2 */ 2 */
 3 3
 4 #include <stdio.h> 4 #include <stdio.h>
 5 #include <stdlib.h> 5 #include <stdlib.h>
 6 #include <conio.h> 6 #include <conio.h>
 7 #include <malloc.h> 7 #include <malloc.h>
 8 #include "survo.h" 8 #include "survo.h"
 9 #include "survoext.h" 9 #include "survoext.h"
 10 #include "survodat.h" 10 #include "survodat.h"
 11 11
 12 SURVO_DATA d; 12 SURVO_DATA d;
 13 double *sum; /* sums of active variables */ 13 double *sum; /* sums of active variables */
 14 long *f; /* frequencies */ 14 long *f; /* frequencies */
 15 double *w; /* sums of weigths */ 15 double *w; /* sums of weigths */
 16 16
 17 long n; 17 long n;
 18 int weight_variable; 18 int weight_variable;
 19 int results_line; 19 int results_line;
 20 20
 21 main(argc,argv) 21 main(argc,argv)
 22 int argc; char *argv[]; 22 int argc; char *argv[];
 23 { 23 {
 24 int i; 24 int i;
 25 25
 26 if (argc==1) 26 if (argc==1)
 27 { 27 {
 28 printf("This program can be used as a SURVO 84C module only."); 28 printf("This program can be used as a SURVO 84C module only.");
 29 return; 29 return;
 30 } 30 }
 31 s_init(argv[1]); 31 s_init(argv[1]);
 32 if (g<2) 32 if (g<2)
 33 { 33 {
 34 init_remarks(); 34 init_remarks();
 35 rem_pr("MEAN <data>,<output_line> / S.Mustonen 4.3.1989"); 35 rem_pr("MEAN <data>,<output_line> / S.Mustonen 4.3.1989");
 36 rem_pr("computes means of active variables. Cases can be limited"); 36 rem_pr("computes means of active variables. Cases can be limited");
 37 rem_pr("by IND and CASES specifications. The observations can be"); 37 rem_pr("by IND and CASES specifications. The observations can be");
 38 rem_pr("weighted by a variable activated by ’W’."); 38 rem_pr("weighted by a variable activated by ’W’.");
 39 wait_remarks(2); 39 wait_remarks(2);
 40 return; 40 return;
 41 } 41 }
 42 results_line=0; 42 results_line=0;
 43 if (g>2) 43 if (g>2)
 44 { 44 {
 45 results_line=edline2(word[2],1,1); 45 results_line=edline2(word[2],1,1);
 46 if (results_line==0) return; 46 if (results_line==0) return;
 47 } 47 }
 48 i=data_open(word[1],&d); if (i<0) return; 48 i=data_open(word[1],&d); if (i<0) return;
 49 i=sp_init(r1+r-1); if (i<0) return; 49 i=sp_init(r1+r-1); if (i<0) return;
 50 i=mask(&d); if (i<0) return; 50 i=mask(&d); if (i<0) return;
 51 weight_variable=activated(&d,’W’); 51 weight_variable=activated(&d,’W’);
 52 i=test_scaletypes(); if (i<0) return; 52 i=test_scaletypes(); if (i<0) return;
 53 i=conditions(&d); if (i<0) return; /* permitted only once */ 53 i=conditions(&d); if (i<0) return; /* permitted only once */
 54 i=space_allocation(); if (i<0) return; 54 i=space_allocation(); if (i<0) return;
 55 compute_sums(); 55 compute_sums();
 56 printout(); 56 printout();
 57 free(sum); free(f); free(w); 57 free(sum); free(f); free(w);
 58 data_close(&d); 58 data_close(&d);
 59 } 59 }

 Among the include lines, 8-10 refer to special SURVO 84C include

SURVO 84C

 Programming SURVO 84 in C 7

files. Lines 8-9 should always be present in modules. Line 10 (susurvodat.hrvodat.h)
is needed especially in those modules where SURVO 84C data sets and
data files are employed.

 Line 12 declares the SSURVO_DATAURVO_DATA structure dd which may represent
either a data set in the edit field (as DATA TEST in our example) or a
SURVO 84C data file or part of it or even a matrix file. The writer of the
module has no need to know the actual form of the data set. By using the
tools provided by the SURVO 84C library (like ddata_openata_open on line 48), all
these alternatives can be handled similarly. In rare cases where a distinc-
tion has to be made, the dd.type.type member of the SSURVO_DATAURVO_DATA structure dd
gives the type of the data set at hand.
 On lines 13-15, pointers to various arrays used in MEAN are declared. In
order to make the modules general and flexible, we avoid fixed limits in
arrays. Therefore all arrays whose sizes depend on application (like num-
ber of variables in the analysis) should be defined dynamically. This is done
by using the standard space allocation function mmallocalloc. It has been employ-
ed here for all space reservations through the sspace_allocationpace_allocation call on
line 54.
 Finally, before the main function starts, certain global variables are de-
clared on lines 17-19. To shorten the function calls, we usually prefer using
static variables.

 When calling the !MEAN module as a child process, the main program
of SURVO 84C passes only one parameter (address of the pointer to the
array of system pointers as a string). In the main function of !MEAN this
parameter (aargv[1]rgv[1]) is needed in the s_s_initinit call (line 31). It declares
all important SURVO 84C system parameters and variables for !MEAN.
Thereafter writing of code in !MEAN is like making more functions for the
main program.

 However, before the ss_init_init call, lines 26-30 are given in order to prevent
misuse of !MEAN (direct call of !MEAN from the MS-DOS level).
 After the ss_init_init call we have, for example, rr=current line on the screen
and rr11=first visible edit line on the screen. Hence rr1+r-11+r-1 is the current (ac-
tivated) edit line. See the library reference of ss_init_init for the the complete
list of system variables which are initialized by ss_init_init.
 The ss_init_init function also analyzes the edit line ((MEANMEAN TTEST,19EST,19) which
was activated by the user and splits it into parts wword[0]="MEAN"ord[0]="MEAN",
wword[1]="TEST"ord[1]="TEST" and wword[2]="19"ord[2]="19" giving the total number of ‘words’
found as gg. (In this case gg=3=3).

 Lines 32-41 are for testing the completeness of the user’s call. Observe

SURVO 84C

 8 Seppo Mustonen 1 Aug 1989

that MMEANEAN TTESTEST without an edit line for the results is allowed and thus
only the case (gg<2<2) (mere MMEANEAN activated) leads to an error message.
 In such a case, the standard modules typically give a short notice of their
usage like "Usage: MEAN <data>, L" and the user can get more informa-
tion by consulting the inquiry system of SURVO 84C.
 On a new module written by the user, the inquiry system cannot provide
any information. Therefore it is important to give longer explanations tell-
ing all essential features. This should be done with functions i init_nit_
rremarkemarks, rerem_prm_pr, and wawait_remarksit_remarks as shown on lines 32-41.
These functions emulate the behaviour of the inquiry system. For example,
the user can load the explanations appearing on the screen to the edit field.
 The next section in the main function (lines 42-47) deals with output in
the edit field. As pointed out earlier, the line label (or number) for the re-
sults in the edit field may be omitted (case rresults_line=0esults_line=0). If the line
for the results is given (i.e. gg>2>2), it is found by the SURVO 84C library
function ededline2line2 (line 45). If no edit line corresponding to the user’s
command is found, eedline2dline2 gives an error message and returns 0 instead of
the line number.

 Line 48 ii=data_open(word[1],&d); if (i<0) return;=data_open(word[1],&d); if (i<0) return;
opens the data set and initializes several variables (members of structure
SSURVO_DATA dURVO_DATA d) describing the size and the structure of the data set.
For example, we have the following information readily available for the
subsequent processing:

dd.m.m # of variables in data (type int)
dd.m_act.m_act # of active variables (int)
dd.n.n # of observations in data (long)
dd.l1.l1 first active observation (long)
dd.l2.l2 last active observation (long)
dd.varname[0],...,d.varname[d.m-1].varname[0],...,d.varname[d.m-1]
 names of variables (char **)
dd.vartype[0],...,d.vartype[d.m-1].vartype[0],...,d.vartype[d.m-1]
 types of variables (char **)
 byte 0: type 1,2,4,8 or S
 byte 1: activation
 byte 2: protection
 byte 3: scale type
 byte 4-: other mask bytes
dd.v[0],...,d.v[d.m_act-1].v[0],...,d.v[d.m_act-1]
 indices of the active variables (int *)

 If the data is not available, ddata_openata_open displays an error message and

SURVO 84C

 Programming SURVO 84 in C 9

returns -1. In that case there is an immediate return to the main program of
SURVO 84C.

 In SURVO 84C, the operations are not only controlled by parameters
written on the activated line (like TTESTEST and 1199 in our example), but the
modules can also be guided by using various specifications written around
the activated line anywhere in the edit field. In our example, such specifi-
cations are MMASK=--AAWASK=--AAW and CCASES=Sex:MASES=Sex:M .
 To take their effects into consideration, we must first read all the specifi-
cations written in the current edit field. This happens by calling the ssp_initp_init
function once (line 49: ssp_init(r1+r-1);p_init(r1+r-1);) where the argument refers
to the line currently activated. It implies ssp_initp_init to look for specifica-
tions primarily around that line. Later the spspfindfind function is called repeat-
edly to find specifications from a list generated by ssp_initp_init.
 The mamasksk function (on line 50) has the task of analysing the VARS
specification (or if it does not appear, the MASK specification) through
the sspfindpfind function. If VARS or MASK exists, mmaskask corrects the activa-
tion status of each variable accordingly. If VARS (MASK) is not given,
the status of the data set itself determines which are active variables.

 Line 51 checks whether any of the variables in the data set have been ac-
tivated by ‘WW’ (using the acactivatedtivated function). If such a variable is found
(as TTest3est3 in our example) the index of that variable is returned and it
serves as a weight variable in the computations. Otherwise aactivatedctivated
returns -1.

 One of the unique features of SURVO 84C is the possibility to assess the
validity of various statistical methods by checking the scale types of vari-
ables. Scale types can be declared for variables in data files only. The user
has the freedom to use or not to use this facility. The ttest_scaletypesest_scaletypes
call on line 52 does the job in a positive case.
 The observations may be restricted by the CASES and IND specifica-
tions. The coconditionsnditions function (called on line 53) tests that those specifi-
cations, if used at all, are written correctly and initializes system vari-
ables which are used for scanning data during the computation (through
a function called ununsuitablesuitable).
 After these preliminary checks, we are ready to allocate space for fre-
quencies, sums of weights and weighted sums of observations. The di-
mension of these arrays must be dd.m_act.m_act. This happens by calling sspace_pace_
aallocationllocation (line 54).
 If the space is succesfully allocated (there is no negative response), the
actual computations can start (ccompute_sumsompute_sums) and the results are printed
(pprintoutrintout).

SURVO 84C

 10 Seppo Mustonen 1 Aug 1989

 Finally (on lines 57-58), the allocated space is freed and the data set
closed before returning to the main program of SURVO 84C and to the
normal editing mode.

 Most of the functions called by the main function of !MEAN are either
in the Microsoft C run-time library or in the SURVO 84C libraries. The
descriptions of the SURVO 84C library functions will be given later in
this paper.
 There are only 4 functions called in the main function being specific for
the !MEAN module, namely ttest_scaletypesest_scaletypes, sspace_allocationpace_allocation,
ccompute_sumsompute_sums, and pprintoutrintout. Since !MEAN is a very small module,
all of them are in the same compiland together with the main function.

 The ttest_scaletypesest_scaletypes function has the following form:

 61 test_scaletypes() 61 test_scaletypes()
 62 { 62 {
 63 int i,scale_error; 63 int i,scale_error;
 64 64
 65 scales(&d); 65 scales(&d);
 66 if (weight_variable>=0) 66 if (weight_variable>=0)
 67 { 67 {
 68 if (!scale_ok(&d,weight_variable,RATIO_SCALE)) 68 if (!scale_ok(&d,weight_variable,RATIO_SCALE))
 69 { 69 {
 70 sprintf(sbuf,"\nWeight variable %.8s must have ratio scale!", 70 sprintf(sbuf,"\nWeight variable %.8s must have ratio scale!",
 71 d.varname[weight_variable]); sur_print(sbuf); 71 d.varname[weight_variable]); sur_print(sbuf);
 72 WAIT; if (scale_check==SCALE_INTERRUPT) return(-1); 72 WAIT; if (scale_check==SCALE_INTERRUPT) return(-1);
 73 } 73 }
 74 } 74 }
 75 scale_error=0; 75 scale_error=0;
 76 for (i=0; i<d.m_act; ++i) 76 for (i=0; i<d.m_act; ++i)
 77 { 77 {
 78 if (!scale_ok(&d,d.v[i],SCORE_SCALE)) 78 if (!scale_ok(&d,d.v[i],SCORE_SCALE))
 79 { 79 {
 80 if (!scale_error) 80 if (!scale_error)
 81 sur_print("\nInvalid scale in variables: "); 81 sur_print("\nInvalid scale in variables: ");
 82 scale_error=1; 82 scale_error=1;
 83 sprintf(sbuf,"%.8s ",d.varname[d.v[i]]); sur_print(sbuf); 83 sprintf(sbuf,"%.8s ",d.varname[d.v[i]]); sur_print(sbuf);
 84 } 84 }
 85 } 85 }
 86 if (scale_error) 86 if (scale_error)
 87 { 87 {
 88 sur_print("\nIn MEAN score scale at least is expected!"); 88 sur_print("\nIn MEAN score scale at least is expected!");
 89 WAIT; if (scale_check==SCALE_INTERRUPT) return(-1); 89 WAIT; if (scale_check==SCALE_INTERRUPT) return(-1);
 90 } 90 }
 91 return(1); 91 return(1);
 92 } 92 }

 The task of this function is to check the scale types of variables selected
for the analysis. In small data sets written in the edit field, the scale types of
the variables (columns) cannot be given and then no checks are per-
formed; ttest_scaletypesest_scaletypes will simply return 1 which means that every-
thing is OK. However, in data sets saved in SURVO 84C data files, each
variable can be labelled with a one character label (mask column #3)
which tells the scale type. For example, variables with a ratio scale are
labelled with ‘RR’ (discrete) or with ‘rr’ (continuous) or with ‘FF’ (variable is

SURVO 84C

 Programming SURVO 84 in C 11

a frequency). If the user omits these labels (each scale label is then ‘ ’),
SURVO 84C will skip all scale checks.
 In any case, at first the scscalesales function is called to remove variables
which have the scale type label ‘--’, which means that the variable in ques-
tion has no scale at all. For example, ‘names’ and ‘addresses’ are typically
variables (fields) without a scale. Of course, a careful user does not select
such variables for computations, but it is safer to have an extra check by
the sscalescales function in order to avoid harmful consequences.
 On lines 66-74 the program tests the scale of the weight variable (if it is
used). It is done by using the scscale_okale_ok function which is set to require
RRATIO_SCALEATIO_SCALE for the weight variable. RRATIO_SCALEATIO_SCALE is a predefined
(in ssurvodat.hurvodat.h) string constant "" RrF" RrF" telling the permitted scale type
alternatives.
 If the scale is not OK, an error message is displayed (on lines 70-71). The
continuation depends on the value of the SURVO 84C system parameter
scscale_checkale_check. This parameter can be set to 0, 1 or 2 by the user where 0
means that scscale_okale_ok always returns 1 and no warning error messages are
given, i.e. everything is accepted. The value sscale_check=1cale_check=1 implies that
messages are given as warnings, but the analysis can be continued. At the
strictest level (value SSCALE_INTERRUPT=2CALE_INTERRUPT=2) the process is actually
interrupted as we can see on line 72.
 The remaining lines of ttest_scaletypesest_scaletypes are devoted to corresponding
checks for active variables which now should have a SSCORE_SCALECORE_SCALE at
least. See how the dd.v[].v[] array selects the dd.m_act.m_act variables from all dd.m.m
variables. (In our example dd.m=5.m=5, dd.m_act=3.m_act=3 and dd.v[0]=2.v[0]=2, dd.v[1]=3.v[1]=3,
dd.v[2]=4.v[2]=4.)

 The error messages and warnings are given by producing an output
string by the standard ssprintfprintf function (usually to a global buffer ssbufbuf of
max. 256 characters) and then yielding the output by susur_print(sbuf)r_print(sbuf).

 The next function to be introduced is sspace_allocationpace_allocation:

 94 space_allocation() 94 space_allocation()
 95 { 95 {
 96 sum=(double *)malloc(d.m_act*sizeof(double)); 96 sum=(double *)malloc(d.m_act*sizeof(double));
 97 if (sum==NULL) { not_enough_memory(); return(-1); } 97 if (sum==NULL) { not_enough_memory(); return(-1); }
 98 f=(long *)malloc(d.m_act*sizeof(long)); 98 f=(long *)malloc(d.m_act*sizeof(long));
 99 if (f==NULL) { not_enough_memory(); return(-1); } 99 if (f==NULL) { not_enough_memory(); return(-1); }
100 w=(double *)malloc(d.m_act*sizeof(double));100 w=(double *)malloc(d.m_act*sizeof(double));
101 if (w==NULL) { not_enough_memory(); return(-1); }101 if (w==NULL) { not_enough_memory(); return(-1); }
102 return(1);102 return(1);
103 }103 }
104104
105 not_enough_memory()105 not_enough_memory()
106 {106 {
107 sur_print("\nNot enough memory! (MEAN)");107 sur_print("\nNot enough memory! (MEAN)");
108 WAIT;108 WAIT;
109 }109 }

SURVO 84C

 12 Seppo Mustonen 1 Aug 1989

 This function allocates memory for arrays ssumum, ff and ww, which all should
have dd.m_act.m_act elements.
 It is strongly recommended to use dynamic memory allocation for all
working space which is dependent on the size of the data set. Then no
theoretical limits appear for the number of variables, etc. In practice there
are always some limits. On the 16 bit micros we typically have still the
64KB limit for a single array unless the huge memory model is used.
 Since errors in memory allocation may have very surprising consequen-
ces, it is, of course, possible to start with fixed dimensions and later when
all the space requirements are clear, dynamic arrays are established.
 For example, the lines 13-16 in the main function could read:

 13 #define MAX 100 13 #define MAX 100
 14 double sum[MAX]; /* sums of active variables */ 14 double sum[MAX]; /* sums of active variables */
 15 long f[MAX]; /* frequencies */ 15 long f[MAX]; /* frequencies */
 16 double w[MAX]; /* sums of weights */ 16 double w[MAX]; /* sums of weights */

and sspace_allocationpace_allocation is not needed at all, but this should be a tempo-
rary arrangement only.

 The data set will be scanned by the ccompute_sumsompute_sums function:

111 compute_sums()111 compute_sums()
112 {112 {
113 int i;113 int i;
114 long l;114 long l;
115115
116 n=0L;116 n=0L;
117 for (i=0; i<d.m_act; ++i)117 for (i=0; i<d.m_act; ++i)
118 { f[i]=0L; w[i]=0.0; sum[i]=0.0; }118 { f[i]=0L; w[i]=0.0; sum[i]=0.0; }
119119
120 sur_print("\n");120 sur_print("\n");
121 for (l=d.l1; l<=d.l2; ++l)121 for (l=d.l1; l<=d.l2; ++l)
122 {122 {
123 double weight;123 double weight;
124124
125 if (unsuitable(&d,l)) continue;125 if (unsuitable(&d,l)) continue;
126 if (weight_variable==-1) weight=1.0;126 if (weight_variable==-1) weight=1.0;
127 else127 else
128 {128 {
129 data_load(&d,l,weight_variable,&weight);129 data_load(&d,l,weight_variable,&weight);
130 if (weight==MISSING8) continue;130 if (weight==MISSING8) continue;
131 }131 }
132 ++n;132 ++n;
133 sprintf(sbuf,"%ld ",l); sur_print(sbuf);133 sprintf(sbuf,"%ld ",l); sur_print(sbuf);
134 for (i=0; i<d.m_act; ++i)134 for (i=0; i<d.m_act; ++i)
135 {135 {
136 double x;136 double x;
137137
138 if (d.v[i]==weight_variable) continue;138 if (d.v[i]==weight_variable) continue;
139 data_load(&d,l,d.v[i],&x);139 data_load(&d,l,d.v[i],&x);
140 if (x==MISSING8) continue;140 if (x==MISSING8) continue;
141 ++f[i]; w[i]+=weight; sum[i]+=weight*x;141 ++f[i]; w[i]+=weight; sum[i]+=weight*x;
142 }142 }
143 }143 }
144 }144 }

 At first, the work space is cleared (lines 116-118) and then the rest of the
function consists of a loop for active observations (from dd.l1.l1 to dd.l2.l2).

SURVO 84C

 Programming SURVO 84 in C 13

In this loop the function ununsuitablesuitable checks (line 125) whether the
conditions (set by coconditionsnditions in the main module) are met in the current
observation jj. If not, the rest of the loop is skipped.
 If the observation is accepted, first the value of the possible weight var-
iable is read by the dadata_loadta_load function (line 129). If wweighteight is missing
(line 130), the rest of the loop is skipped. If there is no weight variable,
wweight=1.0eight=1.0 is selected (line 126).
 Thereafter the number of cases nn is increased by one and the order of
the current observation is displayed on the screen to indicate that the run is
going on (lines 132-133).
 In the inner loop (lines 134-142) all the active variables are scanned and
the cumulative sums updated. However, the weight variable is skipped (on
line 138). Similarly, possible missing values of active variables are omit-
ted. By comparing nn to ff[i][i] we can see the number of missing observations
in each variable separately.

 The final task of the !MEAN module is to give the results by calling the
pprintoutrintout function:

146 printout()146 printout()
147 {147 {
148 int i;148 int i;
149 char line[LLENGTH];149 char line[LLENGTH];
150 char mean[32];150 char mean[32];
151151
152 output_open(eout);152 output_open(eout);
153 sprintf(line," Means of variables in %s N=%ld%c",153 sprintf(line," Means of variables in %s N=%ld%c",
154 word[1],n,EOS);154 word[1],n,EOS);
155 if (weight_variable>=0)155 if (weight_variable>=0)
156 {156 {
157 strcat(line," Weight=");157 strcat(line," Weight=");
158 strncat(line,d.varname[weight_variable],8);158 strncat(line,d.varname[weight_variable],8);
159 }159 }
160 print_line(line);160 print_line(line);
161 strcpy(line," Variable Mean N(missing)");161 strcpy(line," Variable Mean N(missing)");
162 print_line(line);162 print_line(line);
163 for (i=0; i<d.m_act; ++i)163 for (i=0; i<d.m_act; ++i)
164 {164 {
165 if (d.v[i]==weight_variable) continue;165 if (d.v[i]==weight_variable) continue;
166 if (w[i]==0.0)166 if (w[i]==0.0)
167 sprintf(line," %-8.8s - %6ld",d.varname[d.v[i]],167 sprintf(line," %-8.8s - %6ld",d.varname[d.v[i]],
168 n-f[i]);168 n-f[i]);
169 else169 else
170 {170 {
171 fnconv(sum[i]/w[i],accuracy+2,mean);171 fnconv(sum[i]/w[i],accuracy+2,mean);
172 sprintf(line," %-8.8s %s %6ld",d.varname[d.v[i]],172 sprintf(line," %-8.8s %s %6ld",d.varname[d.v[i]],
173 mean,n-f[i]);173 mean,n-f[i]);
174 }174 }
175 print_line(line);175 print_line(line);
176 }176 }
177 output_close(eout);177 output_close(eout);
178 }178 }
179179
180 print_line(line)180 print_line(line)
181 char *line;181 char *line;
182 {182 {
183 output_line(line,eout,results_line);183 output_line(line,eout,results_line);
184 if (results_line) ++results_line;184 if (results_line) ++results_line;
185 }185 }

SURVO 84C

 14 Seppo Mustonen 1 Aug 1989

 At first the output file/device eeoutout is opened by the ououtput_opentput_open func-
tion. Thereafter lines can be written to eeoutout by the ooutput_lineutput_line function
(called in the function pprint_linerint_line on line 183). The lines are appended to
the file. So no previous results are overwritten.
 The SURVO 84C library function ououtput_linetput_line writes also lines in the
current edit field provided that the third argument (here rresults_lineesults_line)
gives a valid line number. Remember that the first line for the results was
optional in the MEAN operation and we set rresults_line=0esults_line=0 (on line 42)
if that line label was missing.
pprint_linerint_line (lines 180-185) is only an auxiliary function to keep an eye

on the current output line in the edit field.
 It is a practice in SURVO 84C that the numerical accuracy of the printed
numbers can be controlled by the user. This happens by using the system
parameter aaccuracyccuracy (typically set to the value 7 in SURVO.APU) which
gives the desired number of significant digits and such. The writers of the
modules must take the current value of aaccuracyccuracy into account when selec-
ting the printout parameters. The library function fnfnconvconv is often useful in
this task. Here (on line 171) it formats the means. aaccuracy+2ccuracy+2 gives the
total length of the resulting string mmeanean; we must have one extra place
for sign and one for the decimal point.

 These 185 lines constitute the whole !MEAN module in its source form.
Since several library functions were employed and there are many ‘hidden’
or optional properties included, the total amount of code after compiling
and linking is about 60KB. However, if the module grows, the actual code
size is not growing proportionally. For example, !MEAN can be consider-
ed a tiny special case of the !CORR module which computes standard
deviations and correlations in addition to means, but the size of !CORR
is only 6KB more than the size of !MEAN. Thus it is profitable to create
modules with several tasks and options.

 All SURVO 84C compilands of SURVO 84C modules have to be com-
piled in the large memory model because the SURVO 84C libraries
(SSURVO.LIBURVO.LIB, SSURVOMAT.LIBURVOMAT.LIB, etc.) are available in this model only.
Thus, the !!MEAN.CMEAN.C file is compiled by the command

CCL /c /AL !MEAN.CL /c /AL !MEAN.C

and it is linked by

LLINK !MEAN,,NUL.MAP,SURVO /STACK:4000 /NOEINK !MEAN,,NUL.MAP,SURVO /STACK:4000 /NOE .

 !MEAN was made and presented only for illustration. Source codes for
selected true SURVO 84C modules are available separately.

SURVO 84C

 Programming SURVO 84 in C 15

 Each module (as an ..EXEEXE file) is normally saved in the SURVO 84C
system directory (typically CC:\E:\E) and activated by the user as MMEANEAN.
During the testing stage, it can be activated from any disk or path.
For example, if !!MEAN.EXEMEAN.EXE is on the disk AA::,

AA:!MEAN DATA1,11:!MEAN DATA1,11

is a valid command in SURVO 84C.

4. Edit field

 One important link between the main program of SURVO 84C and its
modules is the edit field. It materializes our idea of the editorial approach.
 Most of the modules read something from the edit field and write results
in it. This is done by using certain global variables and library functions.

 After the s_s_initinit call we have the access to the edit field through the fol-
lowing global variables:

char *z; /* pointer to edit field */char *z; /* pointer to edit field */
int ed1; /* length of edit line + control column */int ed1; /* length of edit line + control column */
int ed2; /* number of lines in edit field */int ed2; /* number of lines in edit field */
int edshad; /* max. # of shadow lines in edit field */int edshad; /* max. # of shadow lines in edit field */
int *zs; /* indices of shadow lines */int *zs; /* indices of shadow lines */
int r; /* current line on the screen */int r; /* current line on the screen */
int r1; /* first visible edit line on the screen */int r1; /* first visible edit line on the screen */
int r2; /* =ed2 */int r2; /* =ed2 */
int r3; /* # number of edit lines on the screen */int r3; /* # number of edit lines on the screen */
int c; /* current column on the screen */int c; /* current column on the screen */
int c1; /* first visible column on the screen */int c1; /* first visible column on the screen */
int c2; /* =ed1-1 (length of edit line) */int c2; /* =ed1-1 (length of edit line) */
int c3; /* # of columns on the screen */int c3; /* # of columns on the screen */

 The edit field is simply a sequence of eed1*ed2d1*ed2 characters starting from a
character pointed to by zz. Thus the jjthth line in the edit field consists of
characters **(z+(j-1)*ed1+i)(z+(j-1)*ed1+i), ii=0=0,11,......,eed1-1d1-1, where the first one,
**(z+(j-1)*ed1)(z+(j-1)*ed1), is the control character.
 Use of direct references through zz should, however, be avoided, since
we do not guarantee that this setup will be valid in future implementations.
Therefore we recommend that the library functions ededreadread and ededwritewrite
should always be employed in reading and writing.
 Their current listings could be the following:

 #include <stdio.h> #include <stdio.h>
 #include <conio.h> #include <conio.h>
 #include <string.h> #include <string.h>
 #include "survo.h" #include "survo.h"

 extern char *z; extern char *z;
 extern int ed1,ed2; extern int ed1,ed2;

 edread(x,lin) edread(x,lin)
 char x[]; /* result as a null terminated string */ char x[]; /* result as a null terminated string */
 int lin; /* line number */ int lin; /* line number */
 { {
 strncpy(x,z+(lin-1)*ed1,ed1); strncpy(x,z+(lin-1)*ed1,ed1);
 x[ed1]=EOS; x[ed1]=EOS;

SURVO 84C

 16 Seppo Mustonen 1 Aug 1989

 } }

 edwrite(x,lin,col) edwrite(x,lin,col)
 char x[]; /* string to be written */ char x[]; /* string to be written */
 int lin; /* line number */ int lin; /* line number */
 int col; /* first column in writing */ int col; /* first column in writing */
 { {
 int i,h; int i,h;
 int len=strlen(x); int len=strlen(x);

 if (len>ed1-col) len=ed1-col; if (len>ed1-col) len=ed1-col;
 for (i=0, h=(lin-1)*ed1+col; i<len; ++i, ++h) for (i=0, h=(lin-1)*ed1+col; i<len; ++i, ++h)
 z[h]=x[i]; z[h]=x[i];
 } }

 The window on the screen (i.e. the visible part of the edit field) is main-
tained by the variables rr,r1,r3,c,c1,c3,r1,r3,c,c1,c3.
 The current size of the window is rr33 lines and cc33 columns (plus the
control column). In that window the location of the cursor is (rr,c,c), the first
visible edit line is rr11 and the first column is cc11. Hence the current position
of the cursor in the edit field is line=rr1+r-11+r-1 and column=cc1+c-11+c-1.

 For example, the character indicated by the cursor can be read as fol-
lows:

 char ch; char ch;
 char x[LLENGTH]; char x[LLENGTH];
 edread(x,r1+r-1); edread(x,r1+r-1);
 ch=x[c1+c-1]; ch=x[c1+c-1];

 The module can change the position of the cursor and even the position
of the window by updating variables rr,c,r1,c1,c,r1,c1. In that case the s_s_endend
function must be called once before the return to the main program.

 For example, the following !SEEK module finds the first edit line start-
ing with a selected word and places the cursor to the first position on that
line. When necessary, the window is moved. If the word is not found, an
error message is displayed and the original display restored.

 1 /* !seek.c 28.3.1986/SM (28.3.1986) 1 /* !seek.c 28.3.1986/SM (28.3.1986)
 2 ** SEEK <word> 2 ** SEEK <word>
 3 */ 3 */
 4 4
 5 #include "survo.h" 5 #include "survo.h"
 6 #include "survoext.h" 6 #include "survoext.h"
 7 7
 8 main(argc,argv) 8 main(argc,argv)
 9 int argc; char *argv[]; 9 int argc; char *argv[];
 10 { 10 {
 11 int i,j; 11 int i,j;
 12 char x[LLENGTH]; 12 char x[LLENGTH];
 13 char *w[1]; 13 char *w[1];
 14 14
 15 if (argc==1) return; 15 if (argc==1) return;
 16 s_init(argv[1]); 16 s_init(argv[1]);
 17 17
 18 if (g<2) 18 if (g<2)
 19 { 19 {
 20 sur_print("\nUsage: SEEK <word>"); 20 sur_print("\nUsage: SEEK <word>");
 21 WAIT; return; 21 WAIT; return;
 22 } 22 }
 23 for (j=1; j<r2; ++j) 23 for (j=1; j<r2; ++j)
 24 { 24 {

SURVO 84C

 Programming SURVO 84 in C 17

 25 edread(x,j); 25 edread(x,j);
 26 i=split(x+1,w,1); 26 i=split(x+1,w,1);
 27 if (strcmp(w[0],word[1])==0) 27 if (strcmp(w[0],word[1])==0)
 28 { 28 {
 29 if (j<r1) r1=j; 29 if (j<r1) r1=j;
 30 else if (j>r1+r3-1) 30 else if (j>r1+r3-1)
 31 { 31 {
 32 r1=j; 32 r1=j;
 33 if (r1>r2-r3+1) r1=r2-r3+1; 33 if (r1>r2-r3+1) r1=r2-r3+1;
 34 } 34 }
 35 r=j-r1+1; 35 r=j-r1+1;
 36 c1=c=1; 36 c1=c=1;
 37 s_end(argv[1]); 37 s_end(argv[1]);
 38 return; 38 return;
 39 } 39 }
 40 } 40 }
 41 sprintf(sbuf,"\nWord %s not as the first word of any line!" 41 sprintf(sbuf,"\nWord %s not as the first word of any line!"
 42 ,word[1]); sur_print(sbuf); 42 ,word[1]); sur_print(sbuf);
 43 WAIT; 43 WAIT;
 44 } 44 }

 All the edit lines are scanned (until success) by the loop starting from
line 23. The current line is read as string xx (line 25) and the actual line
(xx+1+1) without the control character is divided into words by the library
function spsplitlit (line 26). Here only the first word (ww[0][0]) is of interest.
 On line 27 sstrcmptrcmp compares ww[0][0] with wword[1]ord[1] (the word given by the
user). If they are the same, a proper window for displaying the line is select-
ed (29-36) and the module ends by updating the parameters by the s_s_endend
call. If the words are not the same, the search continues and in an entirely
unsuccessful case an error message is displayed (on lines 41-43).

5. Shadow lines

 Various display effects (color, underlining, reversed video, etc.) and oth-
er attributes related to characters and edit lines are maintained by shadow
lines. Normally an edit line has no shadow line, but when at least one char-
acter is typed in special display mode (turned on by the FFORMATORMAT key,
for example), the SURVO 84C system creates a shadow line for the cur-
rent line. Shadow lines are as long as normal edit lines, i.e. eed1d1 bytes and
they are saved in the order they are created after the last normal edit line
(eed2d2).
 The shadow lines may contain any kind of characters. Space (blank) is
the default and means normal display on the screen. Characters ‘1’, ‘2’,
...,‘7’ are reserved for the current palette of colors (or display effects).
Their actual meaning can be controlled by the user (by editing the auxilia-
ry file SURVO.APU). These and other control codes are also used in print-
ing to produce various special effects.
 The total amount of shadow lines is limited by the system parameter
eedshaddshad (default is 20). This limit may, however, be changed by the RE-
DIM operation. If the user tries to exceed the current limit, the system
gives a warning.
 If a shadow line becomes empty, the system frees it for subsequent use

SURVO 84C

 18 Seppo Mustonen 1 Aug 1989

in the same edit field.
 The shadow lines can be read and written as normal edit lines. The index
of the shadow line for the jjthth edit line is zzs[j]s[j]. If there is no shadow line,
zzs[j]=0s[j]=0.
 The library function shshadow_createadow_create is used to create new shadow lines
and shshadow_testadow_test frees the shadow line if it consists of spaces only.
 Normally the modules have no need to use shadow lines.

 To illustrate working with shadow lines, we have made a small module
!SHADOW which creates and fills all the shadow lines of specific edit
lines with a selected character. For example, SSHADOWHADOW 66,10,7,10,7 turns all
characters on lines 6-10 to inverse mode and SSHADOWHADOW 11,END,END frees each
shadow line in the current edit field.

 1 /* !shadow.c 28.3.1986/SM (28.3.1986) 1 /* !shadow.c 28.3.1986/SM (28.3.1986)
 2 SHADOW L1,L2,<shadow_character> 2 SHADOW L1,L2,<shadow_character>
 3 */ 3 */
 4 #include "survo.h" 4 #include "survo.h"
 5 #include "survoext.h" 5 #include "survoext.h"
 6 6
 7 main(argc,argv) 7 main(argc,argv)
 8 int argc; char *argv[]; 8 int argc; char *argv[];
 9 { 9 {
 10 int i,j,j1,j2; 10 int i,j,j1,j2;
 11 char ch; 11 char ch;
 12 char shadow[LLENGTH]; 12 char shadow[LLENGTH];
 13 13
 14 if (argc==1) return; 14 if (argc==1) return;
 15 s_init(argv[1]); 15 s_init(argv[1]);
 16 if (g<3) 16 if (g<3)
 17 { 17 {
 18 sur_print("\nUsage: SHADOW L1,L2,<shadow_character>"); 18 sur_print("\nUsage: SHADOW L1,L2,<shadow_character>");
 19 WAIT; return; 19 WAIT; return;
 20 } 20 }
 21 21
 22 j1=edline2(word[1],1,1); if (j1==0) return; 22 j1=edline2(word[1],1,1); if (j1==0) return;
 23 j2=edline2(word[2],j1,1); if (j2==0) return; 23 j2=edline2(word[2],j1,1); if (j2==0) return;
 24 if (g>3) ch=*word[3]; else ch=’ ’; 24 if (g>3) ch=*word[3]; else ch=’ ’;
 25 for (i=0; i<ed1-1; ++i) shadow[i]=ch; 25 for (i=0; i<ed1-1; ++i) shadow[i]=ch;
 26 shadow[ed1-1]=EOS; 26 shadow[ed1-1]=EOS;
 27 27
 28 for (j=j1; j<=j2; ++j) 28 for (j=j1; j<=j2; ++j)
 29 { 29 {
 30 if (zs[j]==0) 30 if (zs[j]==0)
 31 { 31 {
 32 i=shadow_create(j); 32 i=shadow_create(j);
 33 if (i<0) return; 33 if (i<0) return;
 34 } 34 }
 35 edwrite(shadow,zs[j],1); 35 edwrite(shadow,zs[j],1);
 36 if (ch==’ ’) shadow_test(j); 36 if (ch==’ ’) shadow_test(j);
 37 } 37 }
 38 } 38 }

 When referring to edit lines, both line numbers and line labels may be
used in SURVO 84C. Line labels are one character symbols written in the
control column of the edit field. Thus in modules which take line labels as
their parameters (as !SHADOW above) both alternatives must be support-
ed. This is done simply by using the library function ededline2line2. It was
employed twice in !SHADOW (lines 22-23).

SURVO 84C

 Programming SURVO 84 in C 19

6. Space allocation

 SURVO 84C modules are usually large model programs and compiled
with the /AL option of the Microsoft C compiler. Small modules could al-
so be in small model mode, but the current SURVO 84C libraries support
only the large model. In large model programs there are no limitations for
the size of code and data except the total memory available. In 16 bit mic-
ros we additionally have the limit 64KB for each data item (array). We
have the same limitation, too, for the code in each compiland, but this is
never a real problem, since one module (if reasonably written) is divided
into compilands of much smaller size.
 Within these limitations each module should be written so that space is
allocated according to each application separately. This means that all
vectors and matrices, etc. should get their dimensions dynamically during
the run.
 However, temporary arrays whose sizes depend on the line length of the
edit field, are typically dimensioned by using the SURVO 84C system
constant LLLENGTHLENGTH and its multiplicities. The current value of LLLENGTHLENGTH
is 256 and it implies the maximum line length of the edit field to be 253.
Another constant is LLNAMENAME (current value 64) which is used for names of
files (pathnames) etc.
 In some cases the maximum number of columns (or maximum number
of words or numbers on a single edit line) is critical for some arrays. The
system constant EEP4P4 (current value 100) gives that limit. The counterpart
of EEP4P4 in the SURVO.APU file is the system parameter eep4p4 which may
be used in dynamic space allocation for arrays related to number of columns
in the edit field.
 Matrices should always be defined as one-dimensional arrays and their
elements should be saved columnwise. Thus the element on row ii and col-
umn jj of a mm*n*n matrix AA will be AA[i+n*j][i+n*j] where ii=0=0,11,......,mm-1-1 and
jj=0=0,11,......,nn-1-1. In all arrays the base value for the indices is 0. In output,
however, the base value is always 1.
 Since double precision should normally used in matrix compuations, the
largest square matrix (within the 64KB limit) is 90 × 90.
 Some of the library functions make their own space reservations. For
example, when a data set (SSURVO_DATAURVO_DATA) is opened by the dadata_openta_open
function, memory is allocated for all arrays pointed to by members of this
structure.

SURVO 84C

 20 Seppo Mustonen 1 Aug 1989

7. Include files

 Various system constants, variables and macros are defined in include
files ssurvo.hurvo.h, ssurvoext.hurvoext.h and ssurvodat.hurvodat.h.
 In all standard SURVO 84C compilands, ssurvo.hurvo.h and ssurvoext.hurvoext.h must
be included. In compilands working with SURVO 84C data (lists, tables,
files, etc.) or using extra specifications, also ssurvodat.hurvodat.h should be ob-
served.

 The most important constants defined in ssurvo.hurvo.h are the following (cur-
rent values in parentheses):

EEP4P4 Maximum number of ‘words’ on one edit line (100)
LLLENGTHLENGTH Maximum length of a ‘word’ or a ‘line’ (256)
LLNAMENAME Maximum length of a pathname (64)
MMAXPARMAXPARM Maximum number of ‘words’ in a command (24)

 The following macros, defined in ssurvo.hurvo.h, are available for the screen
control etc.:

WWAITAIT halts the process and displays the message ‘Press
any key!’ until the user has pressed a key.

CCLSLS clears the screen.
LLOCATE((int)r,(inOCATE((int)r,(int)c)t)c)
 The cursor will be located on line rr and column cc.
EERASERASE erases the current line.
BBEEPEEP gives a sound signal.
CCURSOR_OFFURSOR_OFF makes the cursor invisible.
CCURSOR_ONURSOR_ON displays a normal cursor.
CCURSOR_INSURSOR_INS displays an extended cursor (used in insert mode).
CCURSOR_POS((int *)prow,(int *)pcol)URSOR_POS((int *)prow,(int *)pcol)
 saves the current row and column of the cursor in

**prowprow and **pcolpcol.
SSCROLL_UP((int)liCROLL_UP((int)lin1,(int)lin2,(int)n)n1,(int)lin2,(int)n)
 scrolls the lines from llin1in1 to llin2 nin2 n steps
 upwards.
SSCROLL_DOWN((int)CROLL_DOWN((int)lin1,(int)lin2,(int)n)lin1,(int)lin2,(int)n)
 scrolls the lines from llin1in1 to llin2 nin2 n steps
 downwards.
PPR_UPR_UP moves the cursor one step upwards.
PPR_DOWNR_DOWN moves the cursor one step downwards.
PPR_RIGHTR_RIGHT moves the cursor one step to the right.

SURVO 84C

 Programming SURVO 84 in C 21

PPR_LEFTR_LEFT moves the cursor one step to the left.
PPR_ENRMR_ENRM sets the normal display mode (shadow blank).
PPR_EBLDR_EBLD sets the bold mode (shadow 1).
PPR_ESUBR_ESUB sets the subscript mode (shadow 2).
PPR_ESUPR_ESUP sets the superscript mode (shadow 3).
PPR_EUDLR_EUDL sets the underlining mode (shadow 4).
PPR_EBLKR_EBLK sets the blinking mode (shadow 5)
PPR_EOVRR_EOVR sets the oblique mode (shadow 6)
PPR_EINVR_EINV sets the inverse mode (shadow 7)
PPR_EINV2R_EINV2 sets the secondary inverse mode (shadow 8)
PPR_EBLD2R_EBLD2 sets the secondary bold mode (shadow 9).

8. Libraries

 The ready-made tools for programming SURVO 84C modules have
been collected in the following libraries:

SURVO.LIB Functions for general system control,
 management of the edit field,
 data management, specifications, sucros, and prompts
SURVOMAT.LIB Routines for matrix management and algebra
DISTRIB.LIB Continuous statistical distributions (by T.Patovaara)

 All the functions in these libraries have been compiled in the large mem-
ory model. The functions will now be described separately for each lib-
rary.

SURVO 84C

 22 Seppo Mustonen 1 Aug 1989

SURVO.LIB

8.1 Library SURVO.LIB

activated
Summary
int activated(data,character)int activated(data,character)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
char character; /* activation character */char character; /* activation character */

Description
 The activated function finds the first variable which has been activated
by ccharacterharacter in ddataata opened by data_open or data_open2.

Return Value
activated returns # of variable or -1 if no variable has been activated by

ccharacterharacter.

See Also
mask, varfind

Example
int i;int i;
int weight_variable;int weight_variable;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
weight_variable=activated(&dat,’W’);weight_variable=activated(&dat,’W’);

* * *

conditions
Summary
int conditions(data)int conditions(data)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */

Description
 The conditions function reads and tests the IND and CASES specifica-

SURVO 84C

 Programming SURVO 84 in C 23

SURVO.LIB

tions according to ddataata opened by data_open or data_open2.
conditions can be called only once in each SURVO 84C module and it

forms the basis for data scanning where unsuitable is the function for elim-
inating those observations (records) which do not satisfy the IND and
CASES restrictions.

Return Value
conditions returns 1 if IND and CASES specifications have been written

correctly. In case of an error -1 is returned.

See Also
unsuitable

Example
int i;int i;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
i=conditions(&dat);i=conditions(&dat);
if (i<0) { data_close(&dat); return; }if (i<0) { data_close(&dat); return; }

* * *

create_newvar
Summary
int create_newvar(data,name,type)int create_newvar(data,name,type)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
char *name; /* name of new variable */char *name; /* name of new variable */
char type; /* type 1,2,4,8 or S of new var. */char type; /* type 1,2,4,8 or S of new var. */
int len; /* length of field (S type only) */int len; /* length of field (S type only) */

Description
 The create_newvar function creates a new variable with the name
nnameame and of the type ttypeype for data ddataata which has to be opened by data_
open2 of the form ddata_open2(name,data,1,0,0);ata_open2(name,data,1,0,0); .
 The length of the field in case of a string (S) variable, is given by llenen.
In numeric variables the length is determined by ttypeype and llenen is not used.

SURVO 84C

 24 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Return Value
data_load returns the index (00,11,22,...,ddata->m-1ata->m-1) of the new variable and

-1 if there is no room for new variables or the data representation does not
permit creation of new variables.

See Also
data_save

Example
int i;int i;
long j;long j;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open2("TEST",&dat,1,0,0);i=data_open2("TEST",&dat,1,0,0);
if (i<0) return;if (i<0) return;
i=create_newvar(&dat,"COUNT",’2’);i=create_newvar(&dat,"COUNT",’2’);
if (i>=0)if (i>=0)
 for (j=1L; j<=dat.n; ++j) for (j=1L; j<=dat.n; ++j)
 data_save(&dat,j,3,MISSING8); data_save(&dat,j,3,MISSING8);

/* open TEST, create a new variable COUNT of/* open TEST, create a new variable COUNT of
 integer type and save missing values in it. */ integer type and save missing values in it. */

* * *

data_alpha_load
Summary
int data_alpha_load(data,j,i,string)int data_alpha_load(data,j,i,string)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
long j; /* # of observation (record) */long j; /* # of observation (record) */
int i; /* # of variable (field) */int i; /* # of variable (field) */
char *string; /* pointer to data value */char *string; /* pointer to data value */

Description
 The data_alpha_load function reads the value of the jjthth observation in
variable # ii (ii=0,1,...,data->m-1=0,1,...,data->m-1) as a null-terminated string from
ddataata opened by data_open or data_open2.
 Only variables of string (S) type can be loaded by data_alpha_load.

SURVO 84C

 Programming SURVO 84 in C 25

SURVO.LIB

Return Value
data_alpha_load returns 1 if the value is found. Otherwise -1 is re-

turned.

See Also
data_load

Example
int i;int i;
long j;long j;
char value[LLENGTH];char value[LLENGTH];
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
sprintf(sbuf,"\nValues of variable %s:",dat.varname[3]);sprintf(sbuf,"\nValues of variable %s:",dat.varname[3]);
sur_print(sbuf);sur_print(sbuf);
for (j=dat.l1; j<=dat.l2; ++j)for (j=dat.l1; j<=dat.l2; ++j)
 { {
 data_alpha_load(&dat,j,3,value); data_alpha_load(&dat,j,3,value);
 sprintf(sbuf, sprintf(sbuf,
 "\nValue of var. # %d in obs. # %ld is %s", "\nValue of var. # %d in obs. # %ld is %s",
 i+1,j,value); sur_print(sbuf); i+1,j,value); sur_print(sbuf);
 } }
/* open TEST and print values of var. #4 as strings *//* open TEST and print values of var. #4 as strings */

* * *

data_close
Summary
int data_close(data)int data_close(data)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */

Description
 The data_close function closes ddataata opened by data_open or data_
open2 and frees the space allocated for ddataata.

Return Value
 There is no return value.

SURVO 84C

 26 Seppo Mustonen 1 Aug 1989

SURVO.LIB

See Also
data_open, data_open2

Example
SURVO_DATA dat;SURVO_DATA dat;
data_close(&dat);data_close(&dat);

* * *

data_load
Summary
int data_load(data,j,i,px)int data_load(data,j,i,px)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
long j; /* # of observation (record) */long j; /* # of observation (record) */
int i; /* # of variable (field) */int i; /* # of variable (field) */
double *px; /* pointer to data value */double *px; /* pointer to data value */

Description
 The data_load function reads the value **pxpx of the jjthth observation in
variable # ii (ii=0,1,...,data->m-1=0,1,...,data->m-1) from ddataata opened by data_open
or data_open2.
 Both numeric (N) and string (S) fields can be loaded by data_load. In
the latter case the string value is converted to double by the standard function
atof.

Return Value
data_load returns 1 if the value is found. Otherwise -1 is returned.

See Also
data_alpha_load

SURVO 84C

 Programming SURVO 84 in C 27

SURVO.LIB

Example
int i;int i;
long j;long j;
double x;double x;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
sprintf(sbuf,"\nValues of variable %s:",dat.varname[3]);sprintf(sbuf,"\nValues of variable %s:",dat.varname[3]);
sur_print(sbuf);sur_print(sbuf);
for (j=dat.l1; j<=dat.l2; ++j)for (j=dat.l1; j<=dat.l2; ++j)
 { {
 data_load(&dat,j,3,&x); data_load(&dat,j,3,&x);
 sprintf(sbuf, sprintf(sbuf,
 "\nValue of var. # %d in obs. # %ld is %f", "\nValue of var. # %d in obs. # %ld is %f",
 i+1,j,x); sur_print(sbuf); i+1,j,x); sur_print(sbuf);
 } }
/* open TEST and print values of var. #4 *//* open TEST and print values of var. #4 */

* * *

data_open
Summary
int data_open(name,data)int data_open(name,data)
char *name; /* name of SURVO 84C data */char *name; /* name of SURVO 84C data */
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */

Description
 The data_open function opens the SURVO 84C data specified by nnameame.
ddataata is a pointer to the SURVO_DATA structure. The structure type
SURVO_DATA is defined in ssurvodat.hurvodat.h as follows:

#define SURVO_DATA struct survodata#define SURVO_DATA struct survodata

SURVO_DATASURVO_DATA
 { {
 SURVO_DATA_MATRIX d1; /* data matrix structure */ SURVO_DATA_MATRIX d1; /* data matrix structure */
 SURVO_DATA_FILE d2; /* data file structure */ SURVO_DATA_FILE d2; /* data file structure */
 int type; /* 1=data matrix 2=data file int type; /* 1=data matrix 2=data file
 3=data list 4=matrix file */ 3=data list 4=matrix file */
 char *pspace; /* pointer to allocated space */ char *pspace; /* pointer to allocated space */
 int m; /* # of variables */ int m; /* # of variables */
 long n; /* # of observations */ long n; /* # of observations */
 int m_act; /* # of active variables */ int m_act; /* # of active variables */
 long l1,l2; /* selected observations */ long l1,l2; /* selected observations */

SURVO 84C

 28 Seppo Mustonen 1 Aug 1989

SURVO.LIB

 int typelen; /* # of attributes for variables */ int typelen; /* # of attributes for variables */
 int *v; /* indices of active variables */ int *v; /* indices of active variables */
 char **varname; /* names of variables */ char **varname; /* names of variables */
 int *varlen; /* lengths of variables */ int *varlen; /* lengths of variables */
 char **vartype; /* types etc. of variables */ char **vartype; /* types etc. of variables */
 int *varpos; /* positions of variables */ int *varpos; /* positions of variables */
 } ; } ;

 SURVO 84C supports four different forms of data. Data may be located
in the current edit field as a data matrix or a data list, or in a SURVO 84C
data file or in a SURVO 84C matrix file. All forms of data can be accessed
by data_open.
 Usually, when writing SURVO 84C modules it is not necessary to
know the type of the data (given by the structure member ttypeype).

ddata_open(name,data);ata_open(name,data);
is equivalent to
ddata_open2(name,data,0,0,0);ata_open2(name,data,0,0,0);

which means that, in case of a data file, the data is opened
 with space allocated for defined variables (fields) only,
 with short names (of 8 bytes) for variables,
 and without text information.
This is usually sufficient in statistical operations.

Return Value
data_open returns 1 if the file was succesfully opened and -1 otherwise.

In the latter case an error message SURVO 84 data ‘name’ not found!
is displayed.

See Also
data_open2, data_close, data_load, data_alpha_load

Example
int i;int i;
SURVO_DATA dat;SURVO_DATA dat;
i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;

* * *

SURVO 84C

 Programming SURVO 84 in C 29

SURVO.LIB

data_open2
Summary
int data_open2(name,data,p1,p2,p3)int data_open2(name,data,p1,p2,p3)
char *name; /* name of SURVO 84C DATA */char *name; /* name of SURVO 84C DATA */
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
int p1; /* space for variables indicator */int p1; /* space for variables indicator */
int p2; /* name length indicator */int p2; /* name length indicator */
int p3; /* text indicator */int p3; /* text indicator */

Description
 The data_open2 function opens the SURVO 84C data specified by nnameame.
ddataata is a pointer to the SURVO_DATA structure (See data_open).
 The parameters pp11,pp22,pp33 indicate various extensions when ddataata is a
SURVO 84C data file.
If p1=0p1=0, space will be allocated for defined variables (fields)
 only (i.e. for ddata->mata->m variables).
 Otherwise space is available for all possible variables
 (i.e. for ddata->m1ata->m1 variables).
If p2=0p2=0, space will be allocated for short names (of 8 bytes)
 of variables (fields),
 otherwise space is available for full length
 (ddata->d2.lata->d2.l bytes) names of variables.
If p3=0p3=0, no text information is loaded.
 Otherwise space is allocated for general text information
 saved in the data file.
 The text lines are referred to by pointers

ddata->d2.fitext[i]ata->d2.fitext[i], ii=0,1,...,data->d2.textn=0,1,...,data->d2.textn.

Return Value
data_open2 returns 1 if the file was succesfully opened and -1 other-

wise. In the latter case the error message SURVO 84 data ‘name’ not found!
is displayed.

See Also
data_open, data_close, data_load, data_alpha_load

SURVO 84C

 30 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Example
int i;int i;
SURVO_DATA dat;SURVO_DATA dat;
i=data_open2("TEST",&dat,1,1,1);i=data_open2("TEST",&dat,1,1,1);
if (i<0) return;if (i<0) return;

* * *

data_save
Summary
int data_save(data,j,i,x)int data_save(data,j,i,x)
SURVO_DATA *data; /* pointer to 84 data structure */SURVO_DATA *data; /* pointer to 84 data structure */
long j; /* # of observation (record) */long j; /* # of observation (record) */
int i; /* # of variable (field) */int i; /* # of variable (field) */
double x; /* value to be saved */double x; /* value to be saved */

Description
 The data_save function saves the value xx of the jjthth observation in
variable # ii (ii=0,1,...,data->m-1=0,1,...,data->m-1) for ddataata opened by data_open
or data_open2.
 Only numeric values can be saved by data_save. If the field for saving is
a string field, value xx is converted to a string.

Return Value
data_save returns -1 if the field for saving is protected or the data repre-

sentation does not permit saving.

See Also

data_load, create_newvar

SURVO 84C

 Programming SURVO 84 in C 31

SURVO.LIB

Example

int i;int i;
long j;long j;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
for (j=1L; j<=dat.n; ++j)for (j=1L; j<=dat.n; ++j)
 data_save(&dat,j,3,MISSING8); data_save(&dat,j,3,MISSING8);

/* open TEST and save missing values in/* open TEST and save missing values in
 all observations of field #3 */ all observations of field #3 */

* * *

edline2
Summary
int edline2(label,j,error)int edline2(label,j,error)
char *label; /* null-terminated string */char *label; /* null-terminated string */
int j; /* first edit line to be scanned */int j; /* first edit line to be scanned */
int error; /* display of error */int error; /* display of error */

Description
 The edline2 function searches for the first occurrence of llabelabel in the
control column starting from line jj in the edit field. If the edit line is not
found, message Line ‘label’ not found! is displayed. However, if eerrorrror
is 0, no message is produced.
llabelabel can be a line number 1,2,... or a line label consisting of one charac-

ter or of the form EENDND, EEND-1ND-1, EEND-2ND-2, EEND+1ND+1, etc., where EENDND refers
to the last non-empty line in the current edit field or of the form CCURUR,
CCUR+1UR+1, etc., where CCURUR refers to the current line. Thus edline2 covers all
the possibilities the user may employ when referring to lines in SURVO
84C operations.

Return Value
edline2 returns the index of the first edit line found with llabelabel and 0, if

no edit line with llabelabel exists in the current edit field.

SURVO 84C

 32 Seppo Mustonen 1 Aug 1989

SURVO.LIB

See Also
lastline2

Example
 Assume that we have in the edit field:
 1 * 1 *
 2 * 2 *
 3 * 3 *
 4 A This line should be found! 4 A This line should be found!
 5 * 5 *

Then

unsigned int j;unsigned int j;
j=edline2("A",1,1);j=edline2("A",1,1);

returns jj=4=4.

* * *

edread
Summary
int edread(x,j)int edread(x,j)
char *x; /* storage location for input string */char *x; /* storage location for input string */
unsigned int j; /* number of edit line */unsigned int j; /* number of edit line */

Description
 The function edread reads line jj from the current edit field to xx as a null-
terminated string. xx[0][0] will be the control character of the edit line and
the length of xx is eed1d1. Thus the terminating spaces are also in xx.
 Space for xx must be allocated before the edread call; it should be at least
LLLENGTHLENGTH characters.

Return Value
 There is no return value.

See Also
edwrite

SURVO 84C

 Programming SURVO 84 in C 33

SURVO.LIB

Example
 Assume that we have in the edit field:
 7 * 7 *
 8 *PRINT 11,20 8 *PRINT 11,20
 9 * 9 *

Then

char x[LLENGTH];char x[LLENGTH];
edread(x,8);edread(x,8);

gives xx="*PRINT 11,20 "="*PRINT 11,20 "
where sstrlen(x)=ed1trlen(x)=ed1 (width of the edit field + 1).

* * *

edwrite
Summary
int edwrite(x,j,pos)int edwrite(x,j,pos)
char *x; /* null-terminated string */char *x; /* null-terminated string */
unsigned int j; /* number of edit line */unsigned int j; /* number of edit line */
int pos; /* first position on edit line */int pos; /* first position on edit line */

Description
 Function edwrite writes the string xx on the line jj in the current edit field
from the column pposos onwards. If xx is longer than the edit line length per-
mits, the extra characters are not written.

Return Value
 There is no return value.

See Also
edread, output_line

Example
 Assume that we have in the edit field:
 7 * 7 *
 8 *Result: _ 8 *Result: _
 9 * 9 *

SURVO 84C

 34 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Then

char x[]="123.456"char x[]="123.456"
edwrite(x,8,9);edwrite(x,8,9);

gives

 7 * 7 *
 8 *Result: 123.456 8 *Result: 123.456
 9 * 9 *

Applications
edwrite is the standard tool in writing results of edit operations in the edit

field. In operations producing larger output both in the edit field and in
output files, wline is to be used instead of edwrite.

* * *

empty_line
Summary
int empty_line(s,len)int empty_line(s,len)
char *s; /* string */char *s; /* string */
int len; /* length of string */int len; /* length of string */

Description
 The empty_line function tests whether the string ss consists (for the llenen
first bytes) of spaces (blanks) only.

Return Value
empty_line returns 1 if the entire string ss or its llenen first bytes are spaces

and otherwise 0.

Example
char x[LLENGTH];char x[LLENGTH];
edread(x,r1+r);edread(x,r1+r);
i=empty_line(x+1,c2);i=empty_line(x+1,c2);
/* i=1, if the line after the activated line is empty/* i=1, if the line after the activated line is empty
** and i=0, if it is not empty.** and i=0, if it is not empty.
//

* * *

SURVO 84C

 Programming SURVO 84 in C 35

SURVO.LIB

fconv
Summary
int fconv(number,format,string)int fconv(number,format,string)
double number; /* number to be converted */double number; /* number to be converted */
char *format; /* format to be used */char *format; /* format to be used */
char *string; /* string result */char *string; /* string result */

Description
 The fconv function converts the digits of the given nnumberumber to a null-
terminated character string and stores the result in sstringtring.
 The conversion takes place according to the given fformatormat which is a
null-terminated string of form ""1234.123"1234.123" or ""%8.3f"%8.3f".
 The fformat "" ormat "" means the shortest possible representation of nnumberumber as
sstringtring.

Return Value
fconv returns 1 if the nnumberumber is succesfully converted and -1 if the

fformatormat is too restrictive.

See Also
fnconv

Example
double x=3.14159265;double x=3.14159265;
char format[]="123.123";char format[]="123.123";
char result[32];char result[32];
fconv(x,format,result); /* result=" 3.142" */fconv(x,format,result); /* result=" 3.142" */

* * *

SURVO 84C

 36 Seppo Mustonen 1 Aug 1989

SURVO.LIB

fi_create
Summary
fi_create(name,len,m1,m,n,f,extra,textn,textlen,text,fi_create(name,len,m1,m,n,f,extra,textn,textlen,text,
 varname,varlen,vartype) varname,varlen,vartype)
char *name; /* name of data file */char *name; /* name of data file */
int len; /* record length */int len; /* record length */
int m1; /* max # of fields */int m1; /* max # of fields */
int m; /* # of fields */int m; /* # of fields */
long n; /* # of observations */long n; /* # of observations */
int f; /* max field name length */int f; /* max field name length */
int extra; /* field attribute length */int extra; /* field attribute length */
int textn; /* # of comment lines */int textn; /* # of comment lines */
int textlen; /* length of comment line */int textlen; /* length of comment line */
char *text[]; /* pointers to comment lines */char *text[]; /* pointers to comment lines */
char *varname[]; /* names of fields */char *varname[]; /* names of fields */
int varlen[]; /* field lengths */int varlen[]; /* field lengths */
char *vartype[]; /* field attributes */char *vartype[]; /* field attributes */

Description
 The fi_create function creates a new SURVO 84C data file with a path-
name nnameame. If the path is not given, the current data pathname given by
the global variable eediskdisk is used. The default extension is .SVO.
 If nn>0>0, nn missing observations will be saved.

 The data file has the following structure:
 bytes offset
Header fields: 64 bytes (46 bytes in use)
""SURVO 84C DATA "SURVO 84C DATA " char 16 0
record length (llenen) int 2 16
max # of fields (mm11) int 2 18
of fields (mm) int 2 20
of observations (nn) long 4 22
max length of field name (ff) int 2 26
length of field attr. (eextraxtra) int 2 28
of comment lines (ttextnextn) int 2 30
length of comment line (ttextlenextlen) int 2 32

SURVO 84C

 Programming SURVO 84 in C 37

SURVO.LIB

start of comments (ttextext) long 4 34
start of field descr. (vvarar) long 4 38
start of data (ddataata) long 4 42

Comments: ttext=64ext=64
Length of comments ttextn*textlenextn*textlen bytes

Field descriptions: vvar=text+textn*textlenar=text+textn*textlen
Following information repeated mm11 times (ff+extra+extra bytes for each field):
 position in record (vvarposarpos) int 2 0
 length of field (vvarlenarlen) int 2 2
 type (1,2,4,8,S) (vvartypeartype) char 1 4
 activation char 1 5
 protection char 1 6
 other mask bytes char eextraxtra-7 7
 name (varname) char f eextraxtra

Data: ddata=var+m1*(f+extra)ata=var+m1*(f+extra)
 =64+textn*textlen+m1*(f+extra) =64+textn*textlen+m1*(f+extra)

Observation jj starts from ddata+(j-1)*lenata+(j-1)*len

Return Value
fi_create returns 1 if the file is succesfully created and -1 otherwise.

 If a data file with the same name already exists, fi_create asks for per-
mission to overwrite.

Application
 In practice, SURVO 84C data files are created automatically by various
FILE operations. They use fi_create as a subroutine. A direct fi_create call
is seldom needed.

* * *

fnconv
Summary
int fnconv(number,length,string)int fnconv(number,length,string)
double number; /* number to be converted */double number; /* number to be converted */
int length; /* length of the result */int length; /* length of the result */
char *string; /* string result */char *string; /* string result */

SURVO 84C

 38 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Description
 The fnconv function converts the digits of the given nnumberumber to a null-
terminated character string and stores the result in sstringtring. The format of
the result is selected so that the length of sstringtring will be llengthength.
 Exceptionally large numbers are converted to a floating point (exponent)
form and the length of sstringtring may then exceed llengthength.

Return Value
 There is no return value.

See Also
fconv

Example
double x=3.14159265;double x=3.14159265;
char result[32];char result[32];
fnconv(x,7,result); /* result=" 3.1416" */fnconv(x,7,result); /* result=" 3.1416" */

* * *

hae_apu
Summary
int hae_apu(s,t)int hae_apu(s,t)
char *s; /* keyword in SURVO.APU */char *s; /* keyword in SURVO.APU */
char *t; /* value of keyword as a string */char *t; /* value of keyword as a string */

Description
 The hae_apu function searches for the keyword ss in the system file
SURVO.APU which contains the values of the SURVO 84C system param-
eters. The value of the keyword is copied as a null-terminated string to tt.

Return Value
hae_apu returns 1 if the keyword ss is found and 0 otherwise.

See Also
s_init

SURVO 84C

 Programming SURVO 84 in C 39

SURVO.LIB

Example
char value[16];char value[16];
int ep4;int ep4;
ep4=EP4;ep4=EP4;
if (hae_apu("ep4",value)) ep4=atoi(value);if (hae_apu("ep4",value)) ep4=atoi(value);

replaces the default value EEP4P4 of system parameter eep4p4 by a value found
in SURVO.APU in the form eep4=p4=value.

Applications
hae_apu does not read the file SURVO.APU itself, but rather a buffer

which has been created when SURVO 84C is initialized or the SETUP
command has been activated.

hae_apu is not needed very often, since most of the system parameters
maintained by SURVO.APU have been read by the SURVO 84C main
module and appear as global variables in any SURVO 84C module after
the s_init call (See s_init).

* * *

init_remarks, rem_pr, wait_remarks
Summary
int init_remarks()int init_remarks()

int rem_pr(string)int rem_pr(string)
char *string; /* output line */char *string; /* output line */

int wait_remarks(type)int wait_remarks(type)
int type; /* type of prompt */int type; /* type of prompt */

Description
 These functions are to be used in supplementary SURVO 84C modules
not reported in the inquiry system. Substantially, these functions emulate
the behaviour of the inquiry system of SURVO 84C. They are called when
the user has activated the operation with insufficient parameters.
 The init_remarks function initializes a temporary window for remarks to
be printed on consecutive lines, possibly on several pages.
 The rem_pr function prints one line of remarks given as sstringtring.
 The wait_remarks function halts the display temporarily and gives two
kinds of prompts according to ttypeype.

SURVO 84C

 40 Seppo Mustonen 1 Aug 1989

SURVO.LIB

If ttype=1ype=1, the prompt is
 Next page by ’space’ | Next page by ’space’ |
 Load lines by ’+’ | Interrupt by ENTER! Load lines by ’+’ | Interrupt by ENTER!

If ttype=2ype=2, the prompt is
 Load lines by ’+’ | Interrupt by ENTER! Load lines by ’+’ | Interrupt by ENTER!

 Thus wwait_remarks(1);ait_remarks(1); should be given once between pages and
wwait_remarks(2);ait_remarks(2); after the last page.

Return Value
 There is no return value.

* * *

lastline2
Summary
int lastline2()int lastline2()

Description
 Function lastline2 finds the last non-empty line in the current edit field.

Return Value
lastline2 returns the line number. There is no error return.

See Also
edline2

* * *

mask
Summary
int mask(data)int mask(data)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */

Description
 The mask function reads the VAR (or VARS) specification written in
the edit field or, if it does not exist, mask reads the MASK specification
and activates variables (fields) in ddataata opened by data_open or data_

SURVO 84C

 Programming SURVO 84 in C 41

SURVO.LIB

open2.
 The effect of mask is only temporary. There is no change in the activa-
tion status of files. Thus if ddataata is reopened, activation due to mask is no
longer valid.

Return Value
mask returns -1 if the VARS or MASK specification is invalid. Other-

wise mask returns 1.

See Also
scales, activated, varfind

Example

int i;int i;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
mask(&dat);mask(&dat);

* * *

matrix_format
Summary
int matrix_format(format,accuracy,A,m,n)int matrix_format(format,accuracy,A,m,n)
char *format; /* format of type ###.#### */char *format; /* format of type ###.#### */
int accuracy; /* # of characters in one element */int accuracy; /* # of characters in one element */
double *A; /* matrix */double *A; /* matrix */
int m,n; /* # of rows and columns */int m,n; /* # of rows and columns */

Description
 The matrix_format function finds a common suitable fformatormat as a string
of the form ###.#### for the elements of an mm*n*n matrix AA. The length
of fformatormat is given by aaccuracyccuracy.

matrix_format usually precedes matrix_print when the suitable format is
unknown for the matrix to be written.

SURVO 84C

 42 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Return Value
matrix_format always returns 1.

See Also
matrix_print, library SURVOMAT.LIB

* * *

matrix_load
Summary

int matrix_load(matr,A,rdim,cdim,rlab,clab,int matrix_load(matr,A,rdim,cdim,rlab,clab,
 lr,lc,type,expr) lr,lc,type,expr)
char *matr; /* name of matrix file */char *matr; /* name of matrix file */
double **A; /* pointer to matrix space */double **A; /* pointer to matrix space */
int *rdim; /* pointer to number of rows */int *rdim; /* pointer to number of rows */
int *cdim; /* pointer to number of columns */int *cdim; /* pointer to number of columns */
char **rlab; /* pointer to row labels space */char **rlab; /* pointer to row labels space */
char **clab; /* pointer to column labels space */char **clab; /* pointer to column labels space */
int *lr; /* pointer to length of row label */int *lr; /* pointer to length of row label */
int *lc; /* pointer to length of column label */int *lc; /* pointer to length of column label */
int *type; /* pointer to type of matrix */int *type; /* pointer to type of matrix */
char *expr; /* matrix expression (internal name) */char *expr; /* matrix expression (internal name) */

Description
 The matrix_load function reads a matrix saved in a matrix file. It also al-
locates space (by malloc) for the matrix elements (of type double) and for
the row and column labels. matrix_load does not allocate space for scalar
parameters or for the matrix expression.
 The elements of the matrix are read by columns in a one-dimensional
double array pointed by **AA and having the size
((*rdim)*(*cdim)*sizeof(double)*rdim)*(*cdim)*sizeof(double).
 Each row label has the length **lrlr and they are read in a one-dimensional
character array pointed by **rlabrlab and having the size ((*lr)*(*rdim)*lr)*(*rdim).
 If rrlablab is NNULLULL, no space is allocated and no row labels are read.
 Each column label has length of **lclc bytes and they are read in an one-
dimensional character array pointed by **clabclab and having the size
((*lc)*(*cdim)*lc)*(*cdim).
 If cclablab is NNULLULL, no space is allocated and no row labels are read.

SURVO 84C

 Programming SURVO 84 in C 43

SURVO.LIB

**typetype will be the type of the matrix with possible values of
**type=20type=20 diagonal matrix,
**type=10type=10 symmetric matrix,
**type=0 type=0 general matrix

and **exprexpr will be the internal name of the matrix (as a matrix expression)
of length 128 characters at most. Space is not allocated to **exprexpr in
matrix_load; it is the responsibility of the calling function to have 129 bytes
at least for **exprexpr.
 Similarly space must be allocated for rrdimdim,ccdimdim,llrr,llcc and ttypeype before
the matrix_load call.

Return Value
matrix_load returns -1 if matrix mmatratr is not found or if space cannot be

allocated for it. Upon successful completion of the function 1 is returned.

See Also
matrix_save, matrix_print, library SURVOMAT.LIB

Example
double *A;double *A;
int m,n;int m,n;
char *rlab,*clab;char *rlab,*clab;
int lr,lc;int lr,lc;
int type;int type;
char expr[129];char expr[129];

matrix_load("MEANS",&A,&m,&n,&rlab,&clab,matrix_load("MEANS",&A,&m,&n,&rlab,&clab,
 &lr,&lc,&type,expr); &lr,&lc,&type,expr);

reads an mm*n*n matrix AA from a matrix file MMEANS.MATEANS.MAT on the current
data disk. The labels of rows are read in character array cclablab and each
label has length llrr. The labels of columns are read in character array rrlablab
and each of them has length llcc. In most cases llr=lc=8r=lc=8. The type of matrix
is ttypeype and its internal name is eexprxpr.

* * *

SURVO 84C

 44 Seppo Mustonen 1 Aug 1989

SURVO.LIB

matrix_print
Summary
int matrix_print(A,m,n,rlab,clab,lr,lc,int matrix_print(A,m,n,rlab,clab,lr,lc,
 m2,n2,mv,nv,form,width,editline,outfile,header) m2,n2,mv,nv,form,width,editline,outfile,header)
double *A; /* matrix */double *A; /* matrix */
int m,n; /* # of rows and columns */int m,n; /* # of rows and columns */
char *rlab,*clab; /* row and column labels */char *rlab,*clab; /* row and column labels */
int lr,lc; /* lengths of row and col. labels */int lr,lc; /* lengths of row and col. labels */
int m2,n2; /* # of selected rows/cols */int m2,n2; /* # of selected rows/cols */
int *mv,*nv; /* lists of selected rows/cols */int *mv,*nv; /* lists of selected rows/cols */
char *form; /* format as 123.12 or %5.5g */char *form; /* format as 123.12 or %5.5g */
int width; /* entire printing width */int width; /* entire printing width */
int editline; /* first edit line for the output */int editline; /* first edit line for the output */
char *outfile; /* output file/device */char *outfile; /* output file/device */
char *header; /* header text */char *header; /* header text */

Description
 The matrix_print function writes an mm*n*n matrix AA or an mm2*n22*n2 subma-
trix of it in the current edit field and/or appends the same text in a text
file ooutfileutfile.
 The matrix is written in blocks of maximal width of wwidthidth characters.
Each block will be labelled with appropriate row and column labels. The
first output line will be hheadereader.
 If mm2=m2=m, nn2=n2=n and mmv=nv=NULLv=nv=NULL, the entire AA matrix will be written.
 If mm2<=m2<=m, nn2<=n2<=n and mmv=nv=NULLv=nv=NULL, the mm22 first rows and nn22 first
columns of AA will be written.
 If mmvv is not NNULLULL, rows mmv[0]v[0],mmv[1]v[1],...,mmv[m2-1]v[m2-1] (with possible
values from 00 to mm-1-1) are written in this order.
 If nnvv is not NNULLULL, columns nnv[0]v[0],nnv[1]v[1],...,nnv[m2-1]v[m2-1] (with possible
values from 00 to nn-1-1) are written in this order.

Return Value
matrix_print always returns 1.

See Also
matrix_load, matrix_format, library SURVOMAT.LIB

* * *

SURVO 84C

 Programming SURVO 84 in C 45

SURVO.LIB

matrix_save
Summary
int matrix_save(matr,A,m,n,rlab,clab,lr,lc,type,expr)int matrix_save(matr,A,m,n,rlab,clab,lr,lc,type,expr)
char *matr; /* name of matrix file */char *matr; /* name of matrix file */
double *A; /* pointer to matrix */double *A; /* pointer to matrix */
int m; /* number of rows */int m; /* number of rows */
int n; /* number of columns */int n; /* number of columns */
char *rlab; /* row labels space */char *rlab; /* row labels space */
char *clab; /* column labels space */char *clab; /* column labels space */
int lr; /* length of row label */int lr; /* length of row label */
int lc; /* length of column label */int lc; /* length of column label */
int type; /* type of matrix */int type; /* type of matrix */
char *expr; /* matrix expression (internal name) */char *expr; /* matrix expression (internal name) */
int nrem; /* # of comment lines in edit field */int nrem; /* # of comment lines in edit field */
int remline; /* first edit line for the comments */int remline; /* first edit line for the comments */

Description
 The matrix_save function saves matrix AA and its row (rrlablab) and column
(cclablab) labels in a matrix file **matrmatr. **matrmatr is a pathname with the default
path given by the global variable eediskdisk and with the default extension
.MAT .
 The elements of the matrix AA are assumed to be in a one-dimensional
double array pointed by AA by columns.
 Each row label has a length of llrr bytes and they are in a one-dimensional
character array rrlablab as a contiguous string.
 Each column label has a length of llcc bytes and they are in a one-dimen-
sional character array pointed by cclablab as a contiguous string.
ttypeype is the type of the matrix with possible values of
ttype=20ype=20 diagonal matrix,
ttype=10ype=10 symmetric matrix,
ttype=0 ype=0 general matrix,
ttype=-1ype=-1 unknown type.

In the last case matrix_save itself determines the type.
eexprxpr is the internal name of the matrix (as a matrix expression) of a

length of 128 characters at most.
 Also nnremrem comment lines from the edit field starting from edit line
rremlineemline can be saved in the matrix file. In case of no comment lines
nnrem=remline=0rem=remline=0.

SURVO 84C

 46 Seppo Mustonen 1 Aug 1989

SURVO.LIB

 The matrix file has the following structure:

Header fields: EERCRC bytes (EERCRC=128)
""MATRIX84D m n nrem lr lc type "MATRIX84D m n nrem lr lc type "
appearing as an ASCII string where the first 10 bytes ""MATRIX84D "MATRIX84D " are
for identification and the numeric parameters

of rows (mm)
of columns (nn)
of comment lines (nnremrem)
row label length (llrr)
column label length (llcc)
type of the matrix (ttypeype)

have been converted to character strings separated by blanks.

 The header is followed by:
 offset
Comments: nnremrem*EERCRC bytes EERCRC
Internal name (eexprxpr): EERCRC bytes (nnremrem+1)*EERCRC
Column labels (**clabclab): nn*llcc bytes (nnremrem+2)*EERCRC
Rows of the matrix: llrr+88*nn bytes each nn*llcc+(nnremrem+2)*EERCRC

 If the matrix is symmetric (ttype=10ype=10), only the elements of the lower
triangular part are saved by rows, each row preceded by its label of llrr bytes.
 If the matrix is diagonal (ttype=20ype=20), only the diagonal elements, each
preceded by the row label, are saved.
 The total size of the matrix file is
mm*(llrr+8*nn)+nn*llcc+(nnremrem+2)*EERCRC bytes for ttype=0ype=0,
mm*(llrr+8*(mm+1)/2)+mm*llcc+(nnremrem+2)*EERCRC bytes for ttype=10ype=10,
mm*(llrr+8)+mm*llcc+(nnremrem+2)*EERCRC bytes for ttype=20ype=20.

Return Value
matrix_save returns -1 if matrix mmatratr cannot be saved. Otherwise 1 will

be returned.

See Also
matrix_load, library SURVOMAT.LIB

SURVO 84C

 Programming SURVO 84 in C 47

SURVO.LIB

Example
double *A;double *A;
int m,n;int m,n;
char *rlab,*clab;char *rlab,*clab;
int lr,lc;int lr,lc;
int type;int type;
char expr[129];char expr[129];

matrix_save("MEANS",A,m,n,rlab,clab,8,8,-1,expr,0,0);matrix_save("MEANS",A,m,n,rlab,clab,8,8,-1,expr,0,0);

saves an mm*n*n matrix AA in a matrix file MMEANS.MATEANS.MAT on the current data
disk. The labels of rows are in character array cclablab and each label has
length 8. The labels of columns are in character array rrlablab and each of
them has length 8. The type of matrix is -1 (unknown) and its internal
name is eexprxpr. No comment lines are saved from the edit field.

* * *

nextch
Summary
int nextch(display_text)int nextch(display_text)
char *display_text /* prompt text */char *display_text /* prompt text */

Description
 The nextch function prompts the user to press some key by displaying
ddisplay_textisplay_text on the bottom line of the screen.

nextch works also under tutorial mode (reading key strokes from the
sucro file).

Return Value
nextch returns the SURVO 84C key code of the key pressed.

See Also
tut_init, prompt

SURVO 84C

 48 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Example
int m;int m;
m=0;m=0;
while (m!=CODE_RETURN)while (m!=CODE_RETURN)
 m=nextch("Press ENTER!"); m=nextch("Press ENTER!");
/* The program waits until ENTER is pressed *//* The program waits until ENTER is pressed */

* * *

output_open, output_line, output_close
Summary
int output_open(file)int output_open(file)
char *file; /* name of output file */char *file; /* name of output file */

int output_line(string,file,editline)int output_line(string,file,editline)
char *string; /* output string */char *string; /* output string */
char *file; /* name of output file */char *file; /* name of output file */
int editline; /* current output line in edit field */int editline; /* current output line in edit field */

int output_close(file)int output_close(file)
char *file; /* name of output file */char *file; /* name of output file */

Description
 The output_open function opens ffileile to be used as an output file for
SURVO 84C results.
 The output_line function appends the given sstringtring to ffileile, replacing
sstringtring’s terminating null character (EEOSOS) with a newline character
(’’\n’\n’) in ffileile.
 Simultaneously sstringtring will be copied to eeditlineditline in the current edit
field, if 11<=editline<=r2<=editline<=r2. When eeditlineditline overrides those limits, no
error message is given, but copying is prohibited. Thus eeditline=0ditline=0 sup-
presses printing in the edit field.
 The output_close function closes ffileile.

Return Value
output_open returns 1 if the file was successfully opened and -1 other-

wise. There is no return value for output_line and output_close.

See Also
edwrite

SURVO 84C

 Programming SURVO 84 in C 49

SURVO.LIB

Application
 The global SURVO 84C variable eeoutout gives the name of the output file/
device the user has selected (by OUTPUT command, for example).
 Normally eeoutout is opened once by
int i;int i;
i=output_open(eout);i=output_open(eout);
if (i<0) return;if (i<0) return;

Then each output line is written by
int ed_output_line;int ed_output_line;
 /* initialized according to situation */ /* initialized according to situation */
char line[LLENGTH];char line[LLENGTH];
 /* filled with information to be written */ /* filled with information to be written */
output_line(line,eout,ed_output_line++);output_line(line,eout,ed_output_line++);

Finally, after all results have been written eeoutout is closed by
output_close(eout);output_close(eout);

* * *

prompt
Summary
int prompt(question,answer,maxlength)int prompt(question,answer,maxlength)
char *question; /* prompt text */char *question; /* prompt text */
char *answer; /* default/final answer */char *answer; /* default/final answer */
int maxlength; /* max length of the answer */int maxlength; /* max length of the answer */

Description
 The prompt function presents a qquestionuestion on the screen giving a default
aanswernswer and letting the user edit it or type a new answer within the limit
given by mmaxlengthaxlength.
 The place for the prompt can be selected by LLOCATE(row,column);OCATE(row,column); .

prompt works also under tutorial mode (reading the user’s answers from
the sucro file).

Return Value
 There is no return value. The user’s answer will be in aanswernswer as a null-
terminated string.

SURVO 84C

 50 Seppo Mustonen 1 Aug 1989

SURVO.LIB

See Also
tut_init, nextch

Example
char filename[LNAME];char filename[LNAME];

strcpy(filename,"TEST");strcpy(filename,"TEST");
LOCATE(r3+2,1); /* bottom line on the screen */LOCATE(r3+2,1); /* bottom line on the screen */
prompt("Name of file? ",filename,LNAME-1);prompt("Name of file? ",filename,LNAME-1);

* * *

s_end
Summary
int s_end(address)int s_end(address)
char *address; /* address of SURVO 84C pointerschar *address; /* address of SURVO 84C pointers
 as a string */ as a string */

Description
 The s_end function copies the SURVO 84C system parameters which
have been altered in current module back to the main module.
s_end should be called once before returning to the main program in those
modules which change any of the scalar parameters
rr,rr11,cc,cc11,eetutu,eetu1tu1,eetu2tu2,eetu3tu3,ttutposutpos,eerunrun,eedispdisp.
 For example, eedispdisp may be changed from its default value 1 to to
avoid redisplay of the entire screen after return.
 Normally s_end is not needed at all.

See Also
s_init

Example
 See also s_init.
s_end(argv[1]);s_end(argv[1]);

* * *

SURVO 84C

 Programming SURVO 84 in C 51

SURVO.LIB

s_init
Summary
int s_init(address)int s_init(address)
char *address; /* address of SURVO 84C pointerschar *address; /* address of SURVO 84C pointers
 as a string */ as a string */

Description
 The s_init function copies the SURVO 84C system parameters from the
SURVO 84C main module (parent process) to the current module (child
process).
 The 4-byte address of pointers is passed from the parent to the child in a
form of a string aaddressddress and in practice always replaced by aargv[1]rgv[1].
 After the s_init call, which should take place once in the beginning of
each SURVO 84C module the following variables and parameters are
available with their current values:

char *z; /* pointer to edit field */char *z; /* pointer to edit field */
int ed1; /* length of edit line + control column */int ed1; /* length of edit line + control column */
int ed2; /* number of lines in edit field */int ed2; /* number of lines in edit field */
int edshad; /* max. # of shadow lines in edit field */int edshad; /* max. # of shadow lines in edit field */
int r; /* current line on the screen */int r; /* current line on the screen */
int r1; /* first visible edit line on the screen */int r1; /* first visible edit line on the screen */
int r2; /* =ed2 */int r2; /* =ed2 */
int r3; /* # number of edit lines on the screen */int r3; /* # number of edit lines on the screen */
int c; /* current column on the screen */int c; /* current column on the screen */
int c1; /* first visible column on the screen */int c1; /* first visible column on the screen */
int c2; /* =ed1-1 (length of edit line) */int c2; /* =ed1-1 (length of edit line) */
int c3; /* # of columns on the screen */int c3; /* # of columns on the screen */
char *edisk; /* current data disk (path) */char *edisk; /* current data disk (path) */
char *esysd; /* SURVO 84C system disk (path) */char *esysd; /* SURVO 84C system disk (path) */
char *eout; /* output file/device */char *eout; /* output file/device */
int etu; /* tutorial mode indicator */int etu; /* tutorial mode indicator */
char *etufile; /* current sucro file (when etu>0) */char *etufile; /* current sucro file (when etu>0) */
int etu1,etu2,etu3; /* tutorial mode parameters */int etu1,etu2,etu3; /* tutorial mode parameters */
long tutpos; /* pointer to sucro file */long tutpos; /* pointer to sucro file */
int *zs; /* indices of shadow lines */int *zs; /* indices of shadow lines */
int zshn; /* # of shadow lines */int zshn; /* # of shadow lines */
int erun; /* run mode indicator (1=run mode on) */int erun; /* run mode indicator (1=run mode on) */
int edisp; /* display mode after exit from current module */int edisp; /* display mode after exit from current module */
char *sapu; /* buffer for SURVO.APU parameters */char *sapu; /* buffer for SURVO.APU parameters */
char *info; /* string for information between modules */char *info; /* string for information between modules */
char **key_label; /* key label pointers */char **key_label; /* key label pointers */
char *key_lab; /* key label buffer */char *key_lab; /* key label buffer */
char *survo_id; /* owner of the SURVO 84C copy */char *survo_id; /* owner of the SURVO 84C copy */
char **disp_string; /* display string pointers */char **disp_string; /* display string pointers */
int speclist; /* size of buffer for specifications */int speclist; /* size of buffer for specifications */
int specmax; /* max # of specifications */int specmax; /* max # of specifications */
char *active_data; /* current SURVO 84C DATA */char *active_data; /* current SURVO 84C DATA */
int scale_check; /* scale type checking level */int scale_check; /* scale type checking level */
int accuracy; /* accuracy for printouts */int accuracy; /* accuracy for printouts */
int scroll_line; /* first scroll line for temporary displays */int scroll_line; /* first scroll line for temporary displays */
int space_break; /* break indicator for space bar (1=on) */int space_break; /* break indicator for space bar (1=on) */
int sdisp; /* current shadow character (display mode) */int sdisp; /* current shadow character (display mode) */

SURVO 84C

 52 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Return Value
 There is no return value.

See Also
hae_apu, s_end, tut_init

Example
 A typical start of the main function in a SURVO 84C module is:

main(argc,argv)main(argc,argv)
int argc; char *argv[1];int argc; char *argv[1];
 { {
 if (argc==1) return; if (argc==1) return;
 s_init(argv[1]); s_init(argv[1]);
/* *//* */
 } }

* * *

scale_ok
Summary
int scale_ok(data,i,scale)int scale_ok(data,i,scale)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
int i; /* # of variable */int i; /* # of variable */
char *scale; /* list of allowed scales as a string */char *scale; /* list of allowed scales as a string */

Description
 The scale_ok function tests whether the scale type of variable # ii in ddataata
opened by data_open or data_open2 belongs to the given list sscalecale of scale
types.
 In ssurvodat.hurvodat.h the following scale types are predefined:

#define ORDINAL_SCALE " DOoSsIiRrF"#define ORDINAL_SCALE " DOoSsIiRrF"
#define SCORE_SCALE " DSsIiRrF"#define SCORE_SCALE " DSsIiRrF"
#define INTERVAL_SCALE " DIiRrF"#define INTERVAL_SCALE " DIiRrF"
#define RATIO_SCALE " RrF"#define RATIO_SCALE " RrF"
#define DISCRETE_VARIABLE " DNOSIRF"#define DISCRETE_VARIABLE " DNOSIRF"
#define CONTINUOUS_VARIABLE " osir"#define CONTINUOUS_VARIABLE " osir"

where the different scale types are denoted as follows:

SURVO 84C

 Programming SURVO 84 in C 53

SURVO.LIB

-- no scale
 (blank) scale unknown
DD Dichotomy (two distinct numeric values)
NN Nominal
OO Ordinal (discrete)
oo Ordinal (continuous)
SS Score (discrete)
ss Score (continuous)
II Interval (discrete)
ii Interval (continuous)
RR Ratio (discrete)
rr Ratio (continuous)
FF Frequency

Return Value
scale_ok returns 1 if the scale of variable # ii is found in sscalecale. Other-

wise 0 is returned. If the system parameter sscale_checkcale_check is 0, then scale is
not checked at all and 1 is returned. However, if the scale of variable # ii is
’-’, 0 is returned irrespective of sscalecale and the value of sscale_checkcale_check.

See Also
scales

Example
int i;int i;
int weight_variable;int weight_variable;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
weight_variable=activated(&dat,’W’);weight_variable=activated(&dat,’W’);

SURVO 84C

 54 Seppo Mustonen 1 Aug 1989

SURVO.LIB

if (weight_variable>=0)if (weight_variable>=0)
 { {
 if (!scale_ok(&dat,weight_variable,RATIO_SCALE)) if (!scale_ok(&dat,weight_variable,RATIO_SCALE))
 { {
 printf("\nWeight variable %.8s must have ratio scale!", printf("\nWeight variable %.8s must have ratio scale!",
 dat.varname[weight_variable]); dat.varname[weight_variable]);
 WAIT; if (scale_check==SCALE_INTERRUPT) return; WAIT; if (scale_check==SCALE_INTERRUPT) return;
 } }
 } }

* * *

scales
Summary
int scales(data)int scales(data)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */

Description
 The scales function removes all variables with the scale type ’-’ (no
scale) from the list ddata->vata->v of active variables.
ddataata must be opened by data_open or data_open2.
scales is usually called after mask in statistical SURVO 84C modules

to remove fields without scale from the analysis irrespective of the user’s
selection. scales thus updates ddata->m_actata->m_act and selection vector ddata->vata->v.

Return Value
 There is no return value.

See Also
mask

SURVO 84C

 Programming SURVO 84 in C 55

SURVO.LIB

Example
int i;int i;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
mask(&dat); /* select variables according to MASK */mask(&dat); /* select variables according to MASK */
scales(&dat); /* remove variables without scale */scales(&dat); /* remove variables without scale */

* * *

shadow_create
Summary
int shadow_create(j)int shadow_create(j)
int j; /* edit line */int j; /* edit line */

Description
 The shadow_create function creates a shadow line consisting of eed1d1
spaces for the jjthth line (11<=j<=ed2<=j<=ed2) in the edit field. After the shadow_
create call zzs[j]s[j] is the index of the new shadow line.
 If there is no more space for a new shadow line (eedshaddshad is the max.
number), an error message Not space anymore for special display lines!
is displayed.

Return Value
shadow_create returns 1 if the shadow line has been created and -1

otherwise.

See Also
shadow_test

SURVO 84C

 56 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Example

char x[LLENGTH];char x[LLENGTH];
int i;int i;
for (i=0; i<c2; ++i) x[i]=’7’;for (i=0; i<c2; ++i) x[i]=’7’;
if (zs[10]==0)if (zs[10]==0)
 { {
 i=shadow_create(10); i=shadow_create(10);
 if (i<0) return; if (i<0) return;
 } }
edwrite(x,zs[10],1);edwrite(x,zs[10],1);
/* turns all characters on edit line 10/* turns all characters on edit line 10
 into reversed video (shadow value 7) */ into reversed video (shadow value 7) */

* * *

shadow_test
Summary
int shadow_test(j)int shadow_test(j)
int j; /* edit line */int j; /* edit line */

Description
 The shadow_test function frees the shadow line of the jjthth edit line if it
consists of spaces (blanks) only.

Return Value
 There is no return value.

See Also
shadow_create

Example
int j;int j;
for (j=1; j<=r2; ++j)for (j=1; j<=r2; ++j)
 if (zs(j)>0) shadow_test(j); if (zs(j)>0) shadow_test(j);
/* frees all unnecessary shadow lines/* frees all unnecessary shadow lines
 in the current edit field. */ in the current edit field. */

* * *

SURVO 84C

 Programming SURVO 84 in C 57

SURVO.LIB

sp_init
Summary
int sp_init(editline)int sp_init(editline)
int editline; /* # of edit line */int editline; /* # of edit line */

Description
 The sp_init function finds all the specifications from the subfield around
eeditlineditline and secondarily from the **GLOBAL*GLOBAL* subfield.

sp_init forms the arrays char ***spa*spa,***spb*spb consisting of the names
(***spa*spa on the left-hand side) and values (***spb*spb on the right-hand side) of
the specifications of the form
<<name>=<value>name>=<value>

 After the sp_init call the function spfind can be used to find the values
of the specifications.

Return Value
sp_init returns 1 if there is enough space for all specifications. Other-

wise -1 is returned.

See Also
spfind

Example
int i;int i;

i=sp_init(r1+r-1);i=sp_init(r1+r-1);
 /* r1+r-1 is the current line in the edit field */ /* r1+r-1 is the current line in the edit field */
if (i<0) return;if (i<0) return;

* * *

spfind
Summary
int spfind(name)int spfind(name)
char *name; /* specification to be found */char *name; /* specification to be found */

SURVO 84C

 58 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Description
 The spfind function searches for the specification nnameame from the ***spa*spa
list which has been created by the sp_init function earlier.

Return Value
 If nnameame is found, spfind returns the index (say ii) of nnameame in the
***spa*spa list. sspb[i]pb[i] is then the pointer to the value of nnameame. If nnameame is not
found, -1 is returned.

See Also
sp_init

Example
int i,k;int i,k;
int x_home,y_home;int x_home,y_home;
char x[LLENGTH]; *px[2];char x[LLENGTH]; *px[2];

i=sp_init(r1+r-1);i=sp_init(r1+r-1);
 /* r1+r-1 is the current line in the edit field */ /* r1+r-1 is the current line in the edit field */
if (i<0) return;if (i<0) return;

i=spfind("HOME");i=spfind("HOME");
if (i>=0)if (i>=0)
 { {
 strcpy(x,spb[i]); strcpy(x,spb[i]);
 k=split(x,px,2); k=split(x,px,2);
 if (k<0) if (k<0)
 { {
 sprintf(sbuf,"\nError in spec. HOME=%s",spb[i]); sprintf(sbuf,"\nError in spec. HOME=%s",spb[i]);
 sur_print(sbuf); WAIT; return; sur_print(sbuf); WAIT; return;
 } }
 x_home=atoi(px[0]); x_home=atoi(px[0]);
 y_home=atoi(px[1]); y_home=atoi(px[1]);
 } }
elseelse
 x_home=y_home=0; x_home=y_home=0;

* * *

SURVO 84C

 Programming SURVO 84 in C 59

SURVO.LIB

split
Summary
int split(s,word,max)int split(s,word,max)
char *s; /* null-terminated string */char *s; /* null-terminated string */
char *word[]; /* pointers to words of string */char *word[]; /* pointers to words of string */
int max; /* max number of words to be found */int max; /* max number of words to be found */

Description
 The split function splits string ss into tokens (words) wword[0]ord[0], wword[1]ord[1],
...,wword[max-1]ord[max-1] interpreting spaces and commas as delimiters. Since split
writes an EEOSOS character in place of every word ending with a space or a com-
ma in ss, the original contents of ss are destroyed during the split call. After
the call, the pointers wword[0]ord[0],wword[1]ord[1],... indicate the starting positions
of the words in ss.
 Please note that the words will be destroyed if the contents of ss are alter-
ed after the split call.

Return Value
split returns the number of words found which is mmaxax at most. Thus if

the number of words in ss is greater than mmaxax, the excessive words will not
be found. There is no error return.

See Also
edread

Example
char x[]="PRINT 11,20";char x[]="PRINT 11,20";
char *word[3];char *word[3];
int i,k;int i,k;

k=split(x,word,3);k=split(x,word,3);
for (i=0; i<k; ++i)for (i=0; i<k; ++i)
 printf("\nword[%d]=%s",i,word[i]); printf("\nword[%d]=%s",i,word[i]);

prints:

word[0]=PRINTword[0]=PRINT
word[1]=11word[1]=11
word[2]=20word[2]=20

SURVO 84C

 60 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Applications
split is the common tool when analyzing edit lines. A typical combina-

tion is, for example:

edread(x,j);edread(x,j);
k=split(x+1,word,10);k=split(x+1,word,10);
 /* x+1=jth edit line without a control character */ /* x+1=jth edit line without a control character */

* * *

sur_print
Summary
int sur_print(string)int sur_print(string)
char *string; /* null-terminated string */char *string; /* null-terminated string */

Description
 The sur_print function prints sstringtring in the window below the line de-
fined by the global variable sscroll_linecroll_line. The output of ssur_printur_print
will be scrolled automatically in that window.

sur_print is used mainly for temporary printouts with a 256 byte global
string ssbufbuf.

Return Value
 There is no return value.

See Also
write_string

Example
double result;double result;
char str[LLENGTH];char str[LLENGTH];

fnconv(result,str,accuracy+2);fnconv(result,str,accuracy+2);
sprintf(sbuf,"\nResult=%s",str);sprintf(sbuf,"\nResult=%s",str);
sur_print(sbuf);sur_print(sbuf);

* * *

SURVO 84C

 Programming SURVO 84 in C 61

SURVO.LIB

sur_wait
Summary
int sur_wait(time,display,break)int sur_wait(time,display,break)
long time; /* waiting time in ms */long time; /* waiting time in ms */
int (*display)(); /* display function during wait */int (*display)(); /* display function during wait */
int break; /* 1: possible to break by any key */int break; /* 1: possible to break by any key */
 /* 0: not possible to break */ /* 0: not possible to break */

Description
 The sur_wait function creates a wait lasting ttimeime milliseconds. During
the wait the ddisplayisplay function is called once every second (to indicate the
time elapsed, for example). If bbreak=1reak=1, the wait can be interrupted by
pressing any key.

Return Value
sur_wait returns -1 if the wait has been interrupted by a key. Other-

wise 0 is returned.

Example
#include <stdio.h>#include <stdio.h>
int sec=0;int sec=0;
main()main()
 { {
 extern seconds(); extern seconds();
 sur_wait(20000L,seconds,1); sur_wait(20000L,seconds,1);
 } }
seconds()seconds()
 { {
 printf(" %d",++sec); printf(" %d",++sec);
 } }
/* This program counts to 20 seconds *//* This program counts to 20 seconds */

* * *

SURVO 84C

 62 Seppo Mustonen 1 Aug 1989

SURVO.LIB

tut_init, tut_end
Summary
int tut_init()int tut_init()

int tut_end()int tut_end()

Description
 The tut_init function opens the tutorial file, if the current module is run
under tutorial mode (system parameter eetu>0tu>0).

tut_init is called once immediately after s_init in those modules which
operate at least partially in conversational mode (by using the prompt and
nextch functions).
 Thus tut_init is not needed in modules which simply carry out their task
without any prompts for the user. Error messages ending with WWAITAIT do
not require tut_init either.
 If tut_init has been called, the functions tut_end and s_end must be
called (in this order) before the exit from the module.

Return Value
 There is no return value.

See Also
s_init, s_end, prompt, nextch

SURVO 84C

 Programming SURVO 84 in C 63

SURVO.LIB

Example
A typical construction in a SURVO 84C module is:

#include "survo.h"#include "survo.h"
#include "survoext.h"#include "survoext.h"

main(argc,argv)main(argc,argv)
int argc; char *argv[1];int argc; char *argv[1];
 { {
 if (argc==1) return; if (argc==1) return;
 s_init(argv[1]); s_init(argv[1]);
 tut_init(); tut_init();
/* *//* */
 tut_end(); tut_end();
 s_end(argv[1]); s_end(argv[1]);
 } }

* * *

unsuitable
Summary
int unsuitable(data,j)int unsuitable(data,j)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
long *j; /* # of observation (record) */long *j; /* # of observation (record) */

Description
 The unsuitable function tests whether observation jj in ddataata opened by
data_open or data_open2 satifies the restrictions imposed by IND and
CASES specifications. Each module must call the conditions function
once before the calls of unsuitable.

Return Value
unsuitable returns 1 if the conditions are not fulfilled and 0 otherwise.

See Also
conditions

SURVO 84C

 64 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Example
int i;int i;
long j;long j;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
i=conditions(&dat);i=conditions(&dat);
if (i<0) { data_close(&dat); return; }if (i<0) { data_close(&dat); return; }
for (j=dat.l1; j<=dat.l2; ++j)for (j=dat.l1; j<=dat.l2; ++j)
 { {
 if (unsuitable(&dat,j)) continue; if (unsuitable(&dat,j)) continue;
 printf(" %ld",j); printf(" %ld",j);
 } }
/* Numbers of observations satisfying/* Numbers of observations satisfying
 the conditions are printed. */ the conditions are printed. */

* * *

varfind
Summary
int varfind(data,name)int varfind(data,name)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
char *name; /* name of variable */char *name; /* name of variable */

int varfind2(data,name,error_display)int varfind2(data,name,error_display)
SURVO_DATA *data; /* pointer to data structure */SURVO_DATA *data; /* pointer to data structure */
char *name; /* name of variable */char *name; /* name of variable */
int error_display;/* 1=on 0=off */int error_display;/* 1=on 0=off */

Description
 The varfind function finds the index corresponding to the given nnameame of
a variable (field) in ddataata opened by data_open or data_open2.
 Comparisons between names are performed by using the first 8 charac-
ters only. Trailing blanks are not counted. varfind is case-sensitive. Thus
""Weight"Weight" is different from ""weight"weight".

SURVO 84C

Programming SURVO 84 in C 65

SURVO.LIB

Return Value
varfind returns # of variable or -1 if no variable corresponding to nnameame

is found. In the latter case an error message is displayed.
varfind2 works as varfind, but in case of an error (variable not found) no

error message is displayed if eerror_display=0rror_display=0.

See Also
mask, activated

Example
int i;int i;
SURVO_DATA dat;SURVO_DATA dat;

i=data_open("TEST",&dat);i=data_open("TEST",&dat);
if (i<0) return;if (i<0) return;
i=varfind(&dat,"Weight");i=varfind(&dat,"Weight");

* * *

wfind
Summary
int wfind(word1,word2,j)int wfind(word1,word2,j)
char *word1; /* first word */char *word1; /* first word */
char *word2; /* second word */char *word2; /* second word */
int j; /* first edit line to be scanned */int j; /* first edit line to be scanned */

Description
 The wfind function searches the first line starting with the words wword1ord1
wword2ord2. The first line to be checked is jj. Extra spaces before and between
the words are not counted.

Return Value
wfind returns the index of the line and -1 if the line is not found.

SURVO 84C

 66 Seppo Mustonen 1 Aug 1989

SURVO.LIB

Example
int k;int k;
char name[]="ABC";char name[]="ABC";
k=wfind("DATA",name,1);k=wfind("DATA",name,1);

finds the first line in the current edit field starting with the words
DDATA ABCATA ABC.

* * *

write_string
Summary
int write_string(x,len,shadow,row,col)int write_string(x,len,shadow,row,col)
char *x; /* string to be written */char *x; /* string to be written */
int len; /* max # of bytes to be written */int len; /* max # of bytes to be written */
char shadow; /* shadow (attribute) character */char shadow; /* shadow (attribute) character */
int row,col; /* row and column of first character */int row,col; /* row and column of first character */

Description
 The write_string function displays the llenen first bytes of xx using the attri-
bute given by sshadowhadow and starting from position (rrowow,ccolol).

Return Value
 There is no return value.

See Also
sur_print

Example
 A message for the user on the bottom line of the screen is produced typi-
cally by:

write_string(space,c3+8,’ ’,r3+2,1);write_string(space,c3+8,’ ’,r3+2,1);
/* Erase bottom line r3+2 *//* Erase bottom line r3+2 */

write_string("Press any key!",14,’1’,r3+2,1);write_string("Press any key!",14,’1’,r3+2,1);
/* Give message in ’red’ *//* Give message in ’red’ */

* * *

SURVO 84C

Programming SURVO 84 in C 67

SURVOMAT.LIB

8.2 Library SURVOMAT.LIB

 Matrix functions are tools for making SURVO 84C operations for linear
models, multivariate analysis, etc. For example, the matrix interpreter
employs the library functions through the MAT operations.
 The matrix operands and results are referred to by pointers of the double
type. To enable dynamic space allocation, the matrices are always stored
as one-dimensional arrays. The elements of the matrices (of type double)
are saved columnwise. All computations are carried out in double preci-
sion.
 For example, the function mat_transp is written as

 mat_transp(T,X,m,n) mat_transp(T,X,m,n)
 double *T,*X; double *T,*X;
 int m,n; int m,n;

{{
register int i,j;register int i,j;

for (i=0; i<m; ++i) for (j=0; j<n; ++j)for (i=0; i<m; ++i) for (j=0; j<n; ++j)
T[j+n*i]=X[i+m*j];T[j+n*i]=X[i+m*j];

return(1);return(1);
}}

 It transposes a mm*n*n matrix XX and gives the result as a nn*m*m matrix TT. The
elements of XX are XX[i+m*j][i+m*j] with row indices ii=0,1,...,m-1 =0,1,...,m-1 and col-
umn indices jj=0,1,...,n-1=0,1,...,n-1.

 The matrix functions do not allocate space for result matrices. For
example, if the function above is called, space for the result T must have
been reserved by
 T=(double *)malloc(m*n*sizeof(double)); T=(double *)malloc(m*n*sizeof(double));
 if (T==NULL) { not_enough_space(); return(-1); } if (T==NULL) { not_enough_space(); return(-1); } .

 If the matrix operation is successful, 1 is returned. Otherwise 0 or a nega-
tive integer is returned. In many cases the return value --i i indicates that
the operation has failed on row/column ii of the matrix.

SURVO 84C

 68 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

Matrix input and output
 The SURVOMAT.LIB library does not support the matrix input and
output directly. The SURVO.LIB library, however, includes the functions
matrix_load and matrix_save functions for matrix files of the type used in
MAT operations, for example. These functions should be used in all SUR-
VO 84C operations which read and write matrices.

 For example, the following SURVO 84C module transposes the matrix
in matrix file A and saves the result in matrix file B, when the command
MMTRANSP A TO BTRANSP A TO B

is given in SURVO 84C. The operation is equivalent to
MMAT B=A’AT B=A’

 1 /* !mtransp.c 30.10.1986/SM (24.6.1989) */ 1 /* !mtransp.c 30.10.1986/SM (24.6.1989) */
 2 #include "survo.h" 2 #include "survo.h"
 3 #include "survoext.h" 3 #include "survoext.h"
 4 #include <stdio.h> 4 #include <stdio.h>
 5 #include <string.h> 5 #include <string.h>
 6 #include <malloc.h> 6 #include <malloc.h>
 7 7
 8 double *A,*B; /* pointers to matrices */ 8 double *A,*B; /* pointers to matrices */
 9 int m,n; /* dimensions of A */ 9 int m,n; /* dimensions of A */
 10 char *rlab,*clab; /* row and column labels */ 10 char *rlab,*clab; /* row and column labels */
 11 int rlen,clen; /* lengths of labels */ 11 int rlen,clen; /* lengths of labels */
 12 int type; /* type of matrix (not used) */ 12 int type; /* type of matrix (not used) */
 13 char expr[LLENGTH]; /* internal matrix name */ 13 char expr[LLENGTH]; /* internal matrix name */
 14 char newexpr[LLENGTH]; 14 char newexpr[LLENGTH];
 15 15
 16 main(argc,argv) 16 main(argc,argv)
 17 int argc; char *argv[]; 17 int argc; char *argv[];
 18 { 18 {
 19 int i; 19 int i;
 20 20
 21 if (argc==1) return; 21 if (argc==1) return;
 22 s_init(argv[1]); 22 s_init(argv[1]);
 23 if (g<4) 23 if (g<4)
 24 { 24 {
 25 sur_print("\nUsage: MTRANSP A TO B"); 25 sur_print("\nUsage: MTRANSP A TO B");
 26 WAIT; return; 26 WAIT; return;
 27 } 27 }
 28 i=matrix_load(word[1],&A,&m,&n,&rlab,&clab, 28 i=matrix_load(word[1],&A,&m,&n,&rlab,&clab,
 29 &rlen,&clen,&type,expr); 29 &rlen,&clen,&type,expr);
 30 B=(double *)malloc(m*n*sizeof(double)); 30 B=(double *)malloc(m*n*sizeof(double));
 31 if (B==NULL) 31 if (B==NULL)
 32 { 32 {
 33 sur_print("\nNot enough memory!"); 33 sur_print("\nNot enough memory!");
 34 WAIT; return; 34 WAIT; return;
 35 } 35 }
 36 mat_transp(B,A,m,n); 36 mat_transp(B,A,m,n);
 37 strcpy(newexpr,"("); strcat(newexpr,expr); 37 strcpy(newexpr,"("); strcat(newexpr,expr);
 38 strcat(newexpr,")’"); 38 strcat(newexpr,")’");
 39 matrix_save(word[3],B,n,m,clab,rlab, 39 matrix_save(word[3],B,n,m,clab,rlab,
 40 clen,rlen,0,newexpr,0,0); 40 clen,rlen,0,newexpr,0,0);
 41 } 41 }

 The matrix_load call (28-29) also allocates space for matrix AA and its
row and column labels rrlablab,cclablab. Space is allocated for the transpose BB on

SURVO 84C

 Programming SURVO 84 in C 69

SURVOMAT.LIB

lines 30-35 and after transposing the label of the matrix is updated on lines
37-38. Finally the matrix_save call (39-40) saves BB in a matrix file. For
additional information on matrix_load and matrix_save functions, see
their descriptions in the SURVO.LIB library.

Functions in library SURVOMAT.LIB
ssurvomat.hurvomat.h must be included for these functions.

mat_add
int mat_add(T,X,Y,m,n)int mat_add(T,X,Y,m,n)
double *T,*X,*Y;double *T,*X,*Y;
int m,n;int m,n;

computes TT=X+Y=X+Y, where XX and YY are mm*n*n matrices.
mat_add always returns 1.

* * *
mat_sub
int mat_sub(T,X,Y,m,n)int mat_sub(T,X,Y,m,n)
double *T,*X,*Y;double *T,*X,*Y;
int m,n;int m,n;

computes TT=X-Y=X-Y, where XX and YY are mm*n*n matrices.
mat_sub always returns 1.

* * *
mat_mlt
int mat_mlt(T,X,Y,m,n,r)int mat_mlt(T,X,Y,m,n,r)
double *T,*X,*Y;double *T,*X,*Y;
int m,n,r;int m,n,r;

computes TT=X*Y=X*Y, where XX is an mm*n*n and YY is an nn*r*r matrix.
mat_mlt always returns 1.

* * *

SURVO 84C

 70 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

mat_inv
int mat_inv(T,X,n,pdet)int mat_inv(T,X,n,pdet)
double *T,*X;double *T,*X;
int n;int n;
double *pdet;double *pdet;

computes matrix TT as the inverse matrix of an nn*n X *n X by the Gauss-Jordan
elimination method. As a by-product, determinant of XX will be **pdetpdet. If any
of the pivot elements are less than 11e-15e-15, XX is considered singular and no TT
is computed; --ii will then be returned where ii is the current row index of
the pivot element (ii=0,1,...,n-1=0,1,...,n-1). In non-sigular cases, 1 is returned.
Warning: The matrix XX to be inverted is not preserved during the mmat_invat_inv
call.

* * *
mat_transp

int mat_transp(T,X,m,n)int mat_transp(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

transposes an mm*n*n matrix XX to an nn*m*m matrix TT.
mat_transp always returns 1.

* * *
mat_mtm

int mat_mtm(T,X,m,n)int mat_mtm(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

computes TT=X’X=X’X, where XX is an mm*n*n matrix.
mat_mtm always returns 1.

* * *

SURVO 84C

 Programming SURVO 84 in C 71

SURVOMAT.LIB

mat_mmt
int mat_mmt(T,X,m,n)int mat_mmt(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

computes computes TT=XX’=XX’, where XX is an mm*n*n matrix.
mat_mmt always returns 1.

* * *

mat_dmlt
int mat_dmlt(T,X,Y,m,n)int mat_dmlt(T,X,Y,m,n)
double *T,*X,*Y;double *T,*X,*Y;
int m,n;int m,n;

computes TT=X*Y=X*Y, where XX is an mm*m*m diagonal matrix and YY is an mm*n*n
matrix. mat_dmlt always returns 1.

* * *
mat_mltd
int mat_mltd(T,X,Y,m,n)int mat_mltd(T,X,Y,m,n)
double *T,*X,*Y;double *T,*X,*Y;
int m,n;int m,n;

computes TT=X*Y=X*Y, where XX is an mm*n*n matrix and YY is an nn*n*n diagonal
matrix. mat_mltd always returns 1.

* * *

SURVO 84C

 72 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

mat_center
int mat_center(T,X,m,n)int mat_center(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

centers an mm*n*n matrix XX by computing the means of the XX columns as an
nn element TT vector and subtracting them from the corresponding col-
umns. mat_center always returns 1.

* * *
mat_nrm

int mat_nrm(T,X,m,n)int mat_nrm(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

normalizes the columns of an mm*n*n matrix XX to length 1. The original
column lengths (square root of sum of squares) will be stored as an nn
element vector TT. Columns of length=0 are not changed.
mat_nrm always returns 1.

* * *
mat_sum

int mat_sum(T,X,m,n)int mat_sum(T,X,m,n)
double *T,*X;double *T,*X;
int m,n;int m,n;

computes the column sums of an mm*n*n matrix XX as an nn element vector TT.
mat_sum always returns 1.

* * *

SURVO 84C

 Programming SURVO 84 in C 73

SURVOMAT.LIB

mat_chol
int mat_chol(T,X,n)int mat_chol(T,X,n)
double *T,*X;double *T,*X;
int n;int n;

performs the Cholesky decomposition of an nn*n*n positive definite matrix
XX. Hence an nn*n*n lower triangular matrix TT satisfying XX=TT’=TT’ will be com-
puted. If XX is not positive definite, mat_chol returns --ii, where ii
(ii=0,1,...,n-1=0,1,...,n-1) represents the column index where this assumption fails.
If decomposition is successful, 1 is returned.

* * *
mat_cholinv
int mat_cholinv(A,n)int mat_cholinv(A,n)
double *A;double *A;
int n;int n;

inverts an nn*n*n positive definite matrix AA by the Cholesky method and
writes the inverted matrix BB partially on AA according to the following
scheme:

Before mat_cholinv: (Here n=5 assumed)
 0 1 2 n-1 n
0 a00 a01 a02 a03 a04 *
1 a10 a11 a12 a13 a14 *
2 a20 a21 a22 a23 a24 *
 a30 a31 a32 a33 a34 *
n-1 a40 a41 a42 a43 a44 *

After mat_cholinv:
 0 1 2 n-1 n
0 a00 b00 b01 b02 b03 b04
1 a10 a11 b11 b12 b13 b14
2 a20 a21 a22 b22 b23 b24
 a30 a31 a32 a33 b33 b34
n-1 a40 a41 a42 a43 a44 b44

 Please note that the elements are assumed to be saved columnwise.

SURVO 84C

 74 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

 To have enough space for BB, at least n*(n+1) elements (of type double)
must have been allocated for A before the mat_cholinv call.
 If A is not positive definite, --i i (where ii is the first column dependent on
previous ones) is returned. In a successful case 1 is returned.

* * *
mat_cholmove

To overwrite A by its inverse completely, use mat_cholmove(A,n) after
mat_cholinv(A,n) to obtain

 0 1 2 n-1 n
0 b00 b01 b02 b03 b04 b04
1 b10 b11 b12 b13 b14 b14
2 b20 b21 b22 b23 b24 b24
 b30 b31 b32 b33 b34 b34
n-1 b40 b41 b42 b43 b44 b44

* * *

mat_gram_schmidt
int mat_gram_schmidt(S,U,X,m,n,tol)int mat_gram_schmidt(S,U,X,m,n,tol)
double *S,*U,*X;double *S,*U,*X;
int m,n;int m,n;
double tol;double tol;

computes the Gram-Schmidt decomposition XX=S*U=S*U for an mm*n*n matrix XX
(with rank(XX)==n<=mn<=m), where SS is an mm*n*n matrix with orthonormal col-
umns and UU is nn*n*n upper triangular.
 The accuracy in checking the linear independency of columns is given
by ttolol. The value ttol=1e-15ol=1e-15 is recommended.
 Return value --ii indicates that column ii (ii=0,1,...,n-1=0,1,...,n-1) is linearly
dependent on previous ones. After a successful decomposition, 1 is returned.

* * *

SURVO 84C

 Programming SURVO 84 in C 75

SURVOMAT.LIB

mat_p
int mat_p(X,n,k)int mat_p(X,n,k)
double *X;double *X;
int n,k;int n,k;

transforms the nn*n*n matrix X by the pivotal operation by using the diagonal
element kk (kk=00,11,...,nn-1-1) as the pivot.

* * *
mat_svd
int mat_svd(X,D,V,m,n,eps,tol)int mat_svd(X,D,V,m,n,eps,tol)
double *X,*D,*V;double *X,*D,*V;
int m,n;int m,n;
double eps,tol;double eps,tol;

makes the singular value decomposition XX=U*=U*diag(DD)*VV’’ for an mm*n*n
matrix XX with mm>=n>=n. After the mat_svd call XX will be overwritten by an
mm*n*n matrix UU which is columnwise orthogonal. DD will be an nn element
vector consisting of singular values and VV an nn*n*n orthogonal matrix.
eepsps and ttolol are tolerance constants (See the source cited below). Suitable

values are eeps=1e-16ps=1e-16 and ttol=(1e-300)/epsol=(1e-300)/eps.
mat_svd has been written using the ALGOL procedure by G.H.Golub

and C.Reinsch as the basis. See Handbook for Automatic Computation,
Volume II, edited by J.H.Wilkinson and C.Reinsch, pp. 134-151 (Springer
1971).

* * *
mat_tred2
int mat_tred2(d,e,A,n,tol)int mat_tred2(d,e,A,n,tol)
double *d,*e,*A;double *d,*e,*A;
int n;int n;
double tol;double tol;

reduces an nn*n*n symmetric matrix AA to tridiagonal form using Household-
er’s reduction. The diagonal of the result is stored as an nn element vector
dd and the sub-diagonal as the last nn-1-1 elements of an nn element vector ee.

SURVO 84C

 76 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

AA will be overwritten by the transformation matrices. ttolol is an accuracy
constant (see mat_svd).
 Space for dd and ee (nn elements each of type double) must be allocated be-
fore mat_tred2 is called.
 To get the eigenvalues and vectors after mmat_tred2(d,e,A,n,tol)at_tred2(d,e,A,n,tol),
function mat_tql2 has to be called.

* * *
mat_tql2

int mat_tql2(d,e,A,n,eps,maxiter)int mat_tql2(d,e,A,n,eps,maxiter)
double *d,*e,*A;double *d,*e,*A;
int n;int n;
double eps;double eps;
int maxiter;int maxiter;

finds the eigenvalues and vectors of the nn*n*n tridiagonal matrix AA obtained
by mat_tred2. Matrix AA will be overwritten by the eigenvectors and the ei-
genvalues will be saved in descending order as an nn element vector dd.
eepsps in an accuracy constant (see mat_svd). Maximum number of itera-

tions for one eigenvalue is mmaxiteraxiter. mmaxiter=30axiter=30 is recommended. In
case of no convergence within mmaxiteraxiter iterations, -1 is returned. If the
eigenvalues and vectors are obtained, 1 is the return value.

mat_tred2 and mat_tql2 have been written using the ALGOL procedures
tred2 and tql2 as the basis. See Handbook for Automatic Computation,
Volume II, edited by J.H.Wilkinson and C.Reinsch, (Springer 1971).

* * *

solve_upper, solve_lower, solve_diag
int solve_upper(X,A,B,m,k,eps)int solve_upper(X,A,B,m,k,eps)
double *X,*A,*B;double *X,*A,*B;
int m,k;int m,k;
double eps;double eps;

solves the system of linear equations AAX=BX=B where AA is an mm*m*m upper
triangular matrix and BB is an mm*k*k matrix. Before calling solve_upper,
space must also be allocated to the mm*k*k solution matrix XX.
 If any of the pivot elements is smaller than eepsps, solve_upper returns --ii

SURVO 84C

 Programming SURVO 84 in C 77

SURVOMAT.LIB

where ii=0=0,11,...,mm-1-1 is the current column. After a successful solution, 1 is
returned.

solve_lower works as solve_upper but with an mm*m*m lower triangular
matrix AA.
 solve_diag works as solve_upper but with an mm*m*m diagonal matrix AA.

* * *
solve_symm
int solve_symm(X,A,B,m,k,eps)int solve_symm(X,A,B,m,k,eps)
double *X,*A,*B;double *X,*A,*B;
int m,k;int m,k;
double eps;double eps;

solves the system of linear equations AAX=BX=B where AA is an mm*m*m positive
definite matrix and BB is an mm*k*k matrix. Before calling solve_symm,
space must also be allocated to the mm*k*k solution matrix XX.
 If any of the pivot elements is smaller than eepsps, solve_symm returns --ii,
where ii=0=0,11,...,mm-1-1 is the current column. After a successful solution, 1 is
returned. If AA is not positive definite, solve_symm calls ortholin1.

solve_symm is based on the ALGOL procedures choldet1 and cholsol1
in Handbook for Automatic Computation, Volume II, edited by J.H.Wil-
kinson and C.Reinsch, (Springer 1971).

* * *
ortholin1
int ortholin1(A,n,m,B,k,eps,X,improvement)int ortholin1(A,n,m,B,k,eps,X,improvement)
double *A;double *A;
int n,m;int n,m;
double *B;double *B;
int k;int k;
double eps;double eps;
double *X;double *X;
int improvement;int improvement;
 /* iterative improvement 1=yes 0=no */ /* iterative improvement 1=yes 0=no */

gives least squares solutions for AAX=BX=B, where AA is an nn*m*m matrix, BB an
nn*k*k matrix and nn>=m>=m.
eepsps is the maximal relative rounding error (typically eeps=1e-15ps=1e-15).

SURVO 84C

 78 Seppo Mustonen 1 Aug 1989

SURVOMAT.LIB

ortholin1 is based on the ALGOL procedure ortholin1 in Handbook for
Automatic Computation, Volume II, edited by J.H.Wilkinson and C.
Reinsch, (Springer 1971).

* * *

sis_tulo
double sis_tulo(a,b,sa,sb,n)double sis_tulo(a,b,sa,sb,n)
double *a,*b;double *a,*b;
int sa,sb,n;int sa,sb,n;

is an assembler routine (written by Timo Patovaara) for computation of
the inner product

a[0]*b[0]+a[sa]*b[sb]+a[2*sa]*b[2*sb]+...a[0]*b[0]+a[sa]*b[sb]+a[2*sa]*b[2*sb]+...
 +a[(n-1)*sa]*b[(n-1)*sb] +a[(n-1)*sa]*b[(n-1)*sb]

 To speed up computations, many of the SURVOMAT.LIB functions use
sis_tulo for scalar products.

* * *

SURVO 84C

 Programming SURVO 84 in C 79

DISTRIB.LIB

8.3 Library DISTRIB.LIB

 Many statistical operations give test statistics with appropriate P values
obtained from standard distributions. To provide such P values and other
numerical characteristics related to theoretical distributions, a set of C
routines for density, distribution and inverse distribution functions of the
common continuous distributions have been written by T. Patovaara.
These functions are presented in the DISTRIB.LIB library.
 The sources for the algorithms used are:

Abramowitz and Stegun: Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables, Dover 1970.

Griffiths and Hill: Applied Statistical Algorithms, Horwood 1985.
Kennedy and Gentle: Statistical Computing, Dekker 1980.

Functions in library DISTRIB.LIB

cdf_std
double cdf_std(x)double cdf_std(x)
double x;double x;

returns the cumulative distribution function of the standardized normal
distribution with the accuracy of the machine.

* * *
inv_std
double inv_std(p)double inv_std(p)
double p;double p;

returns x = inv_F(p) for a given value of p (0 < p < 1-1.0E-15), where inv_F
is the inverse distribution function of the standardized normal distribution.

SURVO 84C

 80 Seppo Mustonen 1 Aug 1989

DISTRIB.LIB

Accuracy:
 0 < p ≤ 1-1E-4: the accuracy of the machine
 1-1E-4 < p ≤ 1-1E-8: 13-10 significant digits
 1-1E-8 < p ≤ 1-1E-11: 9-5 significant digits
 1-1E-11 < p ≤ 1-1E-15: 4-2 significant digits

* * *
pdf_t

double pdf_t(x,n)double pdf_t(x,n)
double x,n;double x,n;

returns the Student’s density function for a value x with n (n > 0) degrees
of freedom with the accuracy of the machine.

* * *
cdf_t

double cdf_t(x,n)double cdf_t(x,n)
double x,n;double x,n;

returns the cumulative distribution function of the Student’s distribution
for a value x with n (n > 0) degrees of freedom.
Accuracy: 10-14 significant digits for |x| ≥ 1E-7 .

* * *

SURVO 84C

 Programming SURVO 84 in C 81

DISTRIB.LIB

inv_t
double inv_t(p,n)double inv_t(p,n)
double p,n;double p,n;

returns x = inv_F(p,n) for a given value of p (0 < p ≤ 1-1E-15), where
inv_F is the inverse distribution function of the Student’s distribution for n
(n > 0) degrees of freedom.
Accuracy:
 0.5+1E-4 ≤ p < 1-1E-7: over 10 significant digits
 1-1E-7 ≤ p < 1-1E-9: 10-9 significant digits
 1-1E-9 ≤ p < 1-1E-12: 8-5 significant digits
 1-1E-12 < p ≤ 1-1E-15: 4-2 significant digits
 Similar accuracy for 0 < p < 0.5 .

* * *
pdf_chi2
double pdf_chi2(x,n)double pdf_chi2(x,n)
double x,n;double x,n;

returns the χ2 density function for a value x with n (n > 0) degrees of
freedom with the accuracy of the machine.

* * *
cdf_chi2
double cdf_chi2(x,n,rel_error)double cdf_chi2(x,n,rel_error)
double x,n,rel_error;double x,n,rel_error;

returns the cumulative distribution function of the χ2 distribution for a
value x with n (n > 0) degrees of freedom.
Accuracy: determined by rrel_errorel_error (1E-15 ≤ rrel_errorel_error < 0.5) .

* * *

SURVO 84C

 82 Seppo Mustonen 1 Aug 1989

DISTRIB.LIB

inv_chi2
double inv_chi2(p,n)double inv_chi2(p,n)
double p,n;double p,n;

returns x = inv_F(p,n) for a given value of p (1E-6 ≤ p < 1-1E-6), where
inv_F is the inverse distribution function of the χ2 distribution for n
(n > 0) degrees of freedom.
Accuracy: over 10 significant digits.

* * *
pdf_beta

double pdf_beta(x,a,b)double pdf_beta(x,a,b)
double x,a,b;double x,a,b;

returns the Beta density function for a value x and parameters a,b (a,b > 0)
with the accuracy of the machine.

* * *
cdf_beta

double cdf_beta(x,a,b,rel_error)double cdf_beta(x,a,b,rel_error)
double x,a,b,rel_error;double x,a,b,rel_error;

returns the cumulative distribution function of the Beta distribution
for a value x and parameters a,b (a,b > 0).
Accuracy: determined by rrel_errorel_error (1E-15 ≤ rrel_errorel_error < 0.5) .

* * *

SURVO 84C

 Programming SURVO 84 in C 83

DISTRIB.LIB

inv_beta
double inv_beta(p,a,b,s_digits)double inv_beta(p,a,b,s_digits)
double p,a,b;double p,a,b;
int s_digits;int s_digits;

returns x = inv_F(p,a,b) for a given value of p (0 < p ≤ 1-1E-15), where
inv_F is the inverse distribution function of the Beta distribution with
parameters a,b.
Accuracy: The number of significant digits is determined by ss_digits_digits
(2 ≤ ss_digits_digits ≤ 14).

* * *
pdf_f
double pdf_f(x,n1,n2)double pdf_f(x,n1,n2)
double x,n1,n2;double x,n1,n2;

returns the F density function for a value x and n1 and n2 (n1,n2 > 0)
degrees of freedom with the accuracy of the machine.

* * *
cdf_f
double cdf_f(x,n1,n2,rel_error)double cdf_f(x,n1,n2,rel_error)
double x,n1,n2,rel_error;double x,n1,n2,rel_error;

returns the cumulative distribution function of the F distribution for a
value x and n1 and n2 (n1,n2 > 0) degrees of freedom.
Accuracy: same as in t distribution if n1 = 1 or n2 = 1.
Otherwise determined by rrel_errorel_error (1E-15 ≤ rrel_errorel_error < 0.5) .

* * *

SURVO 84C

 84 Seppo Mustonen 1 Aug 1989

DISTRIB.LIB

inv_f
double inv_f(p,n1,n2,s_digits)double inv_f(p,n1,n2,s_digits)
double p,n1,n2;double p,n1,n2;
int s_digitsint s_digits

returns x = inv_F(p,n1,n2) for a given value of p (0 < p < 1), where inv_F
is the inverse distribution function of the F distribution for n1 and n2
(n1,n2 > 0) degrees of freedom.
Accuracy: same as in t distribution if n1 = 1 or n2 = 1.
Otherwise the number of significant digits is determined by ss_digits_digits
(2 ≤ ss_digits_digits ≤ 14).

* * *
lg_gamma

double lg_gamma(x)double lg_gamma(x)
double x;double x;

returns the natural logarithm of the gamma function with the accuracy of
the machine.

* * *

SURVO 84C

 Programming SURVO 84 in C 85

Index to SURVO 84C library functions

 activated 9,22
 cdf_beta 82
 cdf_chi2 81
 cdf_f 83
 cdf_std 79
 cdf_t 80
 conditions 9,13,22
 create_newvar 23
 data_alpha_load 24
 data_close 25
 data_load 13,26
 data_open 8,19,27
 data_open2 29
 data_save 30
 edline2 8,18,31
 edread 15,32
 edwrite 15,33
 empty_line 34
 fconv 35
 fi_create 36
 fnconv 14,37
 hae_apu 38
 init_remarks 8,39
 inv_beta 83
 inv_chi2 82
 inv_f 84
 inv_std 79
 inv_t 81
 lastline2 40
 lg_gamma 84
 mask 9,40
 matrix_format 41
 matrix_load 42,68
 matrix_print 44
 matrix_save 45,68,69
 mat_add 69
 mat_center 72
 mat_chol 73
 mat_cholinv 73
 mat_cholmove 74
 mat_dmlt 71
 mat_gram_schmidt 74
 mat_inv 70
 mat_mlt 69
 mat_mltd 71

 mat_mmt 71
 mat_mtm 70
 mat_nrm 72
 mat_p 75
 mat_sub 69
 mat_sum 72
 mat_svd 75
 mat_tql2 76
 mat_transp 67,70
 mat_tred2 75
 nextch 47
 ortholin1 77
 output_close 48
 output_line 14,48
 output_open 13,48
 pdf_beta 82
 pdf_chi2 81
 pdf_f 83
 pdf_t 80
 prompt 49
 rem_pr 8,39
 scales 11,54
 scale_check 11
 scale_ok 11,52
 shadow_create 18,55
 shadow_test 18,56
 sis_tulo 78
 solve_diag 76
 solve_lower 76
 solve_symm 77
 solve_upper 76
 sp_init 9,57
 spfind 9,57
 split 17,59
 sur_print 11,60
 sur_wait 61
 s_end 16,17,50
 s_init 7,15,51
 tut_end 62
 tut_init 62
 unsuitable 9,12,63
 varfind 64
 wait_remarks 8,39
 wfind 65
 write_string 66

	1. Introduction
	2. SURVO 84C processes
	3. Example of a SURVO 84C module
	4. Edit field
	5. Shadow lines
	6. Space allocation
	7. Include files
	8. Libraries
	8.1 Library SURVO.LIB
	8.2 Library SURVOMAT.LIB
	8.3 Library DISTRIB.LIB
	Index to SURVO 84C library functions

