
133

ILTAPÄIVÄSEMINAARI:
Tilastollisten ohjelmistojen

kehitysnäkymiä

 Muste – the R implementation of Survo

Reijo Sund
National Institute for Health and Welfare,

P.O. BOX 30, 00271 Helsinki, Finland

ABSTRACT

Statisticians and other experts in data analysis need flexible tools for their work. R
has become extremely popular software for such purposes. Survo is another flexible
environment for statistical computing and related areas with many innovative proper-
ties and long history starting from the 1960s. The Muste project aims to implement
the functionality of Survo as an R package. This article describes the background and
current status of the project and discusses several technical details of advanced R
programming requiring complex mixing of C, R, and Tcl/Tk-code.

Key Words: Survo, R programming, statistical software, Tcl/Tk, C, editorial
approach, computational statistics

1. INTRODUCTION
Statistical analyses have an important role in quantitative empirical research. In addi-
tion, nowadays mathematical principles and theorems are not enough in statistics, but
computational aspects have become more and more important. Computational statis-
tics focuses on data processing and data analysis, and requires such special properties
from the software that not any single statistical package can be comprehensive
enough. Some may state that all they need is a general purpose programming lan-
guage (such as C or Java), but in practice there are always some pieces of software
that are used to achieve the intended results. This means that the software aimed to
help statistical computing and related areas should provide a flexible working envi-

134

ronment with excellent possibilities to freely extend the environment with new prop-
erties.

Importantly, many statistical software packages have been developed from the ”cus-
tomer’s” point of view, where a customer is something else than an expert statistician
with a sound background on mathematics and computing. From this point of view, it
is likely that many statistical packages will become more and more ”user-friendly in-
terfaces” to extremely complex analyses. In some cases that may be useful, and it cer-
tainly has become a profitable approach for business, but “easy” interface cannot re-
place the required statistical expertise. Moreover, limited possibilities to extend ana-
lyses beyond fixed choices, in tandem with high licensing costs combined with the
slicing of important properties into several separate, expensive ”extension-bricks” re-
stricts the usefulness of such software packages for a statistician. Fortunately, there
are important outliers, such as R and Survo.

1.1 THE ORIGINS OF THE S LANGUAGE AND R
The history of S language started in 1976 at Bell Labs, and led to the development
and implementation of statistical programming language that incorporated extensi-
bility at a fundamental level (Chambers 2008, p. 475). After the implementation of S
language in an open source project R (http://www.r-project.org) initiated by Ihaka &
Gentleman (1996), R has grown and spread extensively and has become very popular
among statisticians and other researchers. In spite of its popularity, the basic interface
of R is quite crude. In addition, the complex manipulation of large datasets may pose
problems and might be unnecessarily clumsy.

1.2 THE BRIEF HISTORY OF SURVO
The idea of statistical software package Survo (http://www.survo.fi/english) dates
back to 1962 when a library of statistical programs was developed in the electronics
department of the Finnish Cable Works (Mustonen 1967, pp. 1-3). Seppo Mustonen
extended the idea during the years 1963-1964 and prepared a first proposal for a sta-
tistical programming system SURVO 64. Survo refers to the word ”survey” and addi-
tionally has a connotation with the Finnish word ”survoa” (=”to compress”) (Musto-
nen 1992a, p. 2). The first fully implemented system was SURVO 66 on Elliott 803
computer. The system allowed user to himself define the analyses to be performed
(Alanko et al. 1968).

The SURVO 76 system was working with the Wang 2200 minicomputer (Mustonen
1977). The system provided an interactive environment and the use corresponded to
conversation with the computer (Mustonen 1980a). The most remarkable single ad-
vance since that has been the invention of the editorial approach, which means that

135

the interactivity is achieved by working with a text editor (Mustonen 1980b). Some-
what surprisingly the editor in Survo was originally developed to help the writing and
printing of music sheets, that certainly was not the main purpose of an interactive sta-
tistical program. However, the editorial approach allowed such a flexibility and free-
dom to the user that it soon replaced the menu-driven interaction. In other words, the
menu-based interface, that has become a standard in graphical operating systems
since the 1990s, was found to be old-fashioned and restricting already at the begin-
ning of the 1980s.

The editorial interface has been the heart of Survo systems since that. The PC-version
SURVO 84C was already more like a statistical operating system (integrated envi-
ronment) than just a program for statistical analyses (Mustonen 1992a). SURVO 98
was the extension to 32-bit version and SURVO MM the first Windows version of
Survo. Since the introduction of an editorial approach in 1979, statistical computing
and data analysis has been integrated as a part of writing and reporting the results of a
research process. Similar ideas have been proposed more than twenty years later in
the context of reproducible research (e.g. Gentleman & Temple Lang 2007).

In spite of its unique and early ideas, Survo is not well known, at least internationally.
This is partially due to the facts that its development has been based on closed source
policy, and the current version operates exclusively under Microsoft Windows.

2. MUSTE PROJECT
The Muste project was suggested in February 2009 by Reijo Sund. The main motiva-
tion for the project was that certain unique or otherwise useful properties of Survo
system were not available in the form of an open source multiple platform software.
As the R project had become very popular, offering an appealing environment for
implementing open source statistical software for multiple platforms, it was a natural
choice to test how it would be possible to produce Survo-look-alike functionality in
this context. That has been an exciting adventure in R programming. There have been
several challenges and it has sometimes been frustratingly hard and time-consuming
to find solutions to the problems. The R extensions manual (R Development Core
Team 2010) has been an invaluable source of information, but it could contain more
examples.

In order to document the progress in the implementation of the Muste project and to
provide simple examples in advanced R programming, we will describe the imple-
mentation process including some solutions to the technical problems encountered.

136

2.1 IMPLEMENTATION OF THE EDITOR
The first step in the implementation was to find a way to reproduce a new window for
the editor as in the Survo system. It quickly turned out that the “tcltk”-package (Dal-
gaard 2001), that is a part of base R, would allow the control of additional windows
in a flexible way with the Tcl/Tk. More precisely, the so called text widget made it
possible to create a window containing text and control it appropriately. The text
widget was easy to create and initialize using the commands in the “tcltk”-package.
The actual problem was to remove the automatic functionality of the text widget and
default key bindings that were not compatible with the Survo editor. The following
extract of R code initializes the main window of Muste and disables certain default
bindings:

require(tcltk)

Create Window

.muste.ikkuna <<- tktoplevel()

Disable automatic protocol for window deletion (alt-F4 or cross button)

tcl("wm", "protocol", .muste.ikkuna, "WM_DELETE_WINDOW",

 quote(cat("Delete protocol disabled!\n")))

Disable resizing of the window

tkwm.resizable(.muste.ikkuna, FALSE, FALSE)

Create font

.muste.font <<- tkfont.create(family="Courier",size=12) }

Create text widget

.muste.txt <<- tktext(.muste.ikkuna,width=80,height=25,

 foreground="black",background="snow",

 wrap="none",font=.muste.font,undo=FALSE)

Show the window containing the text widget

tkgrid(.muste.txt)

Save the internal name of the widget

.muste.window<<-.Tk.ID(.muste.txt)

Disable the default bindings of the text widget

bindings <- gsub("Text ","",tclvalue(tkbindtags(.muste.txt)))

tkbindtags(.muste.txt,bindings)

Disable conflicting key bindings

tcl("bind","all","<Key-F10>","")

tcl("bind","all","<Alt-Key>","")

After the initialization of a text window, it was easy to write to the window and
create bindings to keys so that a simplified look-alike version of the Survo editor
could be implemented using R. It was also quite straightforward to include some ba-
sic commands to be used from the editor. In addition, it turned out to be possible to
use the original non-interactive Survo-modules directly from the look-alike editor.
That was possible because Survo has been developed so that many operations are ac-
tually separate executable (.exe) files and the real Survo editor also runs modules in a
similar way with all required information between the “parent” and the “child” mod-
ules being transferred via temporary files.

137

Such tests were so promising that the next step was to test if it would be possible to
use the C source code of Survo in the Muste project. Professor Seppo Mustonen (the
developer of Survo) kindly provided all required source codes of Survo for such tests,
starting with the Survo library functions (Mustonen 1989) and editorial arithmetics.

It was rather straightforward to compile the needed parts of the source code of Survo
with a C compiler of the open source GNU Compiler Collection (GCC), and then call
the produced stand-alone executable from the look-alike editor running in R in the
same way as original Survo modules. That also demonstrated how it would be possi-
ble to compile modules for genuine Survo with an open source compiler instead of
Microsoft’s C compiler.

The next step towards a native R implementation was to utilize some source code of
Survo directly in R as a part of an actual R package. That was quite straightforward
and only minimal formatting changes had to be made to the original Survo C sources.
The C code was called using .Call interface and Rinternals header file was used in the
C side. Editorial arithmetics and a few other modules were tested and the calling of
C-code from the package’s dynamically linked library worked properly. Many ma-
thematical functions in the Survo library were replaced with the corresponding R li-
brary functions that were described in the ”Writing R Extensions” manual.

As the look-alike editor programmed in R had very limited functionality, there was a
need to replace it with the editor that was programmed in C as in genuine Survo. In
practice this required that virtually all input/output (I/O) functions had to be repro-
grammed, because they contained non portable Microsoft Windows specific code.
Fortunately, Survo had been developed very smartly so that all platform specific
functions were isolated, i.e. it was enough to replace these functions with correspond-
ing ones for the current platform.

In this case, the actual platform was Tcl/Tk, but the interface for Tcl/Tk was via R as
implemented in the “tcltk”-package. In other words, there was a need for executing
Tcl/Tk code (with R interface) within C-code that was called from R, and that re-
quired communication between R-level objects and compiled C code. First task was
to allow the evaluation of R-code within C-code. That was done by slightly modify-
ing an example found in the “Writing R extensions” manual and by making a mini-
malistic wrapper for it:

138

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Parse.h>
#include <stdio.h>

char komento[BUFFERSIZE];

SEXP Muste_EvalRExpr(char *cmd)
{
 ParseStatus status;
 SEXP cmdsexp, cmdexpr, ans = R_NilValue;
 int i;

 snprintf(komento,BUFFERSIZE,
 "if (inherits(try(.muste.ans<-%s,silent=FALSE), \"try-error\")) FALSE else TRUE",cmd);
 PROTECT(cmdsexp = allocVector(STRSXP, 1));
 SET_STRING_ELT(cmdsexp, 0, mkChar(komento));
 cmdexpr = PROTECT(R_ParseVector(cmdsexp, -1, &status, R_NilValue));
 if (status != PARSE_OK) {
 UNPROTECT(2);
 warning("Invalid call %s",cmd);
 return (R_NilValue);
 }
 for(i=0; i<length(cmdexpr); i++) ans = eval(VECTOR_ELT(cmdexpr,i),R_GlobalEnv);
 UNPROTECT(2);
 if (INTEGER(ans)[0]==FALSE) return (R_NilValue);
 ans = findVar(install(".muste.ans"),R_GlobalEnv);
 return ans;
}

int muste_evalr(char *cmd)
 {
 int retstat;
 SEXP status;
 retstat=1;
 status=Muste_EvalRExpr(cmd);
 if (status==R_NilValue) retstat=-1;
 return retstat;
 }

It is easiest to demonstrate the communication between R, Tcl/Tk and C with exam-
ples. The first example is a straightforward call to Tcl/Tk using R interface within C-
code:

void sur_pos_window(char *wname,int x,int y)
 {
 snprintf(komento, BUFFERSIZE, "tcl(\"wm\",\"geometry\",%s,\"+%d+%d\")",wname,x,y);
 muste_evalr(komento);
 }

In this more complex example, a self-made R function

.muste.getscreendim <- function()
 {
 .muste.screen.width<<-as.integer(tkwinfo("screenwidth",.muste.ikkuna))
 .muste.screen.height<<-as.integer(tkwinfo("screenheight",.muste.ikkuna))
 }

is called within C-code, and the contents of R variables are translated into form that
can be handled within C:

139

int sur_screen_dim(int *sizex,int *sizey)
 {
 SEXP avar=R_NilValue;

 snprintf(komento,BUFFERSIZE,".muste.getscreendim()");
 muste_evalr(komento);

 avar = findVar(install(".muste.screen.width"),R_GlobalEnv);
 *sizex=INTEGER(avar)[0];

 avar = findVar(install(".muste.screen.height"),R_GlobalEnv);
 *sizey=INTEGER(avar)[0];

 return(1);
 }

Similar communication techniques work fine also for more complex situations. Un-
fortunately, repeated calls to R-evaluation within C-code tend to be slow like the
loops are slow in standard R programming. This slowness turned out to be very dis-
turbing if there was a need to do a lot of small updates to the contents of a text wid-
get.

While working in the Linux environment, it finally turned out that the direct call to
“tcltk”-package’s dotTcl() function was enough to speed up the process to an accept-
able level (i.e. the idea was to avoid unnecessary parsing in R). The problem was that
although direct calls to unregistered functions in other packages were possible in Li-
nux, that didn’t work in the Microsoft Windows environment because of different
practices in dynamically linked libraries. This problem could have been solved easily,
if the dotTcl() function had been registered as C-callable in the “tcltk”-package. As
that was not the case, there was no other way than to use almost undocumented
R_FindSymbol() function that is, however, included in the R-headers. There was also
a need for the manual conversion of the parameters to suitable form for R, i.e. to
LISP-style list. After some hours spent on exploring the sources of R it was finally
possible to provide a working solution to the problem:

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Rdynload.h>
#include <stdio.h>
#include <string.h>

int muste_window_existing=FALSE;
char muste_window[BUFFERSIZE] = "";
char tclkomento[BUFFERSIZE];
DL_FUNC RdotTcl = NULL;

int Muste_EvalTcl(char *komento, int ikkuna)
{
 SEXP alist,aptr;

 if (RdotTcl == NULL) RdotTcl = R_FindSymbol("dotTcl","tcltk",NULL);

/* Alternative for functions that are registered as C callable: */
/* if (RdotTcl == NULL) RdotTcl =R_GetCCallable("tcltk","dotTcl"); */

140

if (muste_window_existing==FALSE)
 {
 SEXP avar=R_NilValue;
 avar = findVar(install(".muste.window"),R_GlobalEnv);
 strncpy(muste_window,CHAR(STRING_ELT(avar,0)),BUFFERSIZE-2);
 strcat(muste_window," ");
 muste_window_existing=TRUE;
 }

 if(!ikkuna) strcpy(tclkomento,komento);
 else
 {
 strncpy(tclkomento,muste_window,BUFFERSIZE);
 strncat(tclkomento,komento,BUFFERSIZE-1-strlen(muste_window));
 }
 PROTECT(alist = allocList(2));
 aptr=alist;
 aptr=CDR(aptr);
 SETCAR(aptr, mkString(tclkomento));
 RdotTcl(alist);
 UNPROTECT(1);
 return(1);
}

This function finds the entry point to RdotTcl() function and constructs a suitable
LISP-style list for parameters to be passed to the function. It also adds the name of
the Tcl/Tk-window if needed. The most important use for this approach was the func-
tion for writing strings to the text widget:

int write_string(char *x, int len, unsigned char shadow, int row, int col)
 {
 snprintf(komento,BUFFERSIZE,"delete %d.%d %d.%d",row,col-1,row,col-1+len);
 Muste_EvalTcl(komento,TRUE);
 snprintf(komento,BUFFERSIZE,"insert %d.%d \"%s\" shadow%d",row,col-1,x,shadow);
 Muste_EvalTcl(komento,TRUE);
 return(len);
 }

This function first makes room for the string by deleting existing text from the widget
and then inserts new text to the place of old. Here the name of the Tcl/Tk window is
needed. Another example is a sleep function that waits for a given time in millise-
conds so that the waiting thread does not waste all resources:

void muste_sleep(int time)
 {
 char buf[BUFFERSIZE];
 snprintf(buf,BUFFERSIZE,"after %d",time);
 Muste_EvalTcl("update idletasks",FALSE);
 Muste_EvalTcl("update",FALSE);
 R_FlushConsole();
 R_CheckUserInterrupt();
 Muste_EvalTcl(buf,FALSE);
 }

Sleep function was important for implementing an event loop inside the C-code that
also detected the keyboard and mouse events of Tcl/Tk. There was also a need for an
appropriate event handler so that all keyboard and mouse events recorded the event

141

time and type that could be peeked using the C-code. The first version of the event
loop used Survo source almost directly, but it had a drawback that it was not possible
to use R directly from its terminal (or GUI), because R was busy for running the
called C-code.

In order to free R while the editor was idle, there was a need for parallel event loops.
In the current implementation, the event loops are not really separated, but simulated
so that a short C-code checking the event status is repeatedly called with the help of
“tcltk”-package’s possibilities. This solution may not be the most elegant one, but it
works, which is currently the most important criterion for the implementation.

2.2 THE CURRENT STATUS OF MUSTE
At the moment of writing this, Muste (version 0.3.10) contains all basic functions of
the Survo editor and editorial arithmetics. Also the support for sucros (Survo macros)
is implemented. Most of the actual Survo modules are, however, not implemented
yet. It is expected that the implementation of ”passive” modules such as the ones for
matrix interpreter and PostScript printing will be very easy. The modules requiring a
lot of file handling may be somewhat more challenging because of the non-portability
of Windows style paths. It also seems that at least in some 64-bit Mac OS X systems
64-bit longs are causing some unexpected issues in structures and in some file func-
tions. In addition, the basic functions and approaches to addressing the screen graph-
ics will probably require some work, because it is not possible to copy that functio-
nality directly from the Survo sources.

The development of Muste has taken place in different platforms. Initial versions
were prepared with Debian-based Linux Ubuntu and Fedora-based Linpus Lite Li-
nux. Some work has also been conducted under the Microsoft Windows Vista and
Windows XP. Currently, we use mainly 64-bit Snow Leopard Mac OS X as a devel-
opment platform. It has been a pleasure to notice how easy it is to prepare multiplat-
form R packages - the amount of issues requiring different solutions on different plat-
forms has been negligible.

142

2.3 WORKING WITH MUSTE
A screen capture of Muste window (in Mac OS X) after starting Muste with the
command “library(muste)” in R is as follows:

It shows a part of the edit field where a user can freely write any text and commands
as in any text editor. At the beginning of each line there is a line number followed by
a control column that contains only asterisks (stars) in the example but could include
other symbols. Different colors are obtained by using ”shadows” for the text. Techni-
cally, shadows are another layer of text that is reflected in different colors in the ac-
tual edit field. The shadows may have both visual and structural purposes in various
operations. The only command in the above window is SCRATCH (that erases all
contents of the edit field on the same line or below that in the edit field). Commands
are activated by pressing activate key that is escape (ESC). The header line shows the
current date and time, the working directory, the size of the edit field, and certain sta-
tus information. The bottom line contains so called soft buttons that can be activated
with a mouse. More basic information can be found on the website of Survo
(http://www.survo.fi/english).

Some useful functionality of Muste can be seen in the following example, which de-
monstrates miscellaneous conversions (modified from a ready-made Survo tutorial):

143

Editorial arithmetic provides a powerful tool for making many types of calculations
with an extremely flexible interface. The following example is about testing the cor-
relation coefficient presented in detail elsewhere (Mustonen 1992b):

144

As it is difficult to describe the benefits of the editorial approach in this kind of static
text document, we suggest the reader to check some demos on the website Survo, for
example http://www.survo.fi/demos/#ex6.

3. CO-OPERATION BETWEEN MUSTE AND R
The purpose in the Muste project has been to implement the main parts of Survo
functionality before switching to the development of other properties. Muste con-
tains, however, some experimental properties that are not available in Survo. One ex-
ample is the direct running of selected R-code from Muste with <control-R>. This
means that Muste can also be used as a script editor for R. A simple example can be
seen in the following screen capture, where some R-code has been activated directly
from Muste:

Actually, it will be of primary importance to increase the co-operation between
Muste and R in the future. Muste will provide an interface for R and include excellent
data manipulation possibilities that can be used with data sets that may be challeng-
ing to be handled directly in R. For example, Muste does not keep all the data in the
memory but handles them as files. As Muste is a native R package, it will be availa-
ble for all users of R who may need or want to utilize the functionality it offers.

Of course there might be some unexpected challenges during the implementation, but
so far it seems that it is feasible to carry on with the Muste project. The main goal is

145

to release Muste as an open source R package. As far as we know, Muste will be one
of the most many-folded R packages offering several extra properties and extensions
to R as it will contain all essential functionality of the legendary Survo system.

Please visit the Muste website for up-to-date information: http://www.survo.fi/muste

ACKNOWLEDGEMENTS

The author is extremely grateful to professor Seppo Mustonen who has kindly pro-
vided all necessary source codes and tacit knowledge concerning Survo. The Muste
project would not have been possible without his enthusiastic support and important
contributions. The author would also like to thank Kimmo Vehkalahti for all his ef-
forts to the Muste project.

146

References

Alanko T, Mustonen S, Tienari M. A Statistical Programming Language SURVO 66.
BIT 8:69-85, 1968. DOI: 10.1007/BF01939330

Chambers JM. Software for data analysis. Programming with R. Springer Series in
Statistics and Computing. Springer, New York, 2008. DOI: 10.1007/978-0-387-
75936-4

Dalgaard P. The R-Tcl/Tk interface. Proceedings of the 2nd International Workshop
on Distributed Statistical Computing (DSC 2001), March 15-17, Vienna, Austria,
2001.
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/Dalgaard.pdf

Ihaka R, Gentleman R. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5:299-314, 1996. DOI: 10.2307/1390807

Gentleman R, Temple Lang D. Statistical Analyses and Reproducible Research.
Journal of Computational and Graphical Statistics 16(1):1-23, 2007. DOI:
10.1198/106186007X178663

Mustonen S. Tilastollinen tietojenkäsittelyjärjestelmä SURVO 66. Monistesarja,
Tampereen yliopiston tietokonekeskus, Moniste n:o 2, Tampere, 1967. [Statistical
Data Processing System SURVO 66, Report no 2 of the Computing Centre in the
University of Tampere].
http://www.survo.fi/publications/SURVO_66_Mustonen_1967.pdf

Mustonen S. SURVO 76, a statistical data processing system. Research Report No. 6.
Department of Statistics, University of Helsinki, 1977.
http://www.survo.fi/publications/Research_Report_6_Mustonen_1977.pdf

Mustonen S. Interactive analysis in SURVO 76. Proceedings of the 4th Symposium
on Computational Statistics, COMPSTAT, Edinburgh, Scotland, 1980. M.M. Barritt
and D. Wishart, Editors, pp. 253-259. Physica-Verlag, Wien, 1980a.
http://www.survo.fi/publications/COMPSTAT_1980.pdf

Mustonen S. SURVO 76 EDITOR, a new tool for interactive statistical computing,
text and data management. Research Report No. 19. Department of Statistics, Uni-
versity of Helsinki, 1980b.
http://www.survo.fi/publications/Research_Report_19_Mustonen_1980.pdf

147

Mustonen S. Programming SURVO 84 in C. SURVO 84C Contributions 3. Universi-
ty of Helsinki, Department of Statistics, 1989.
http://www.helsinki.fi/survo/c/

Mustonen S. Survo - An Integrated Environment for Statistical Computing and Re-
lated Areas. Survo Systems, Helsinki, 1992a.
http://www.survo.fi/books/1992/Survo_Book_1992_with_comments.pdf

Mustonen S. Editorial interface in Statistical Computing and Related Areas.
Proceedings of the 10th Symposium on Computational Statistics, COMPSTAT,
Neuchâtel, Switzerland, August 1992. Yadolah Dodge and Joe Whittaker, Editors,
Volume 2, pp. 17-32. Physica-Verlag, Heidelberg, 1992b.
http://www.survo.fi/publications/COMPSTAT_1992.pdf

R Development Core Team. Writing R Extensions. Accessed Dec 20th, 2010.
http://cran.r-project.org/doc/manuals/R-exts.pdf

